C. Schabmueller, A. Evans, A. Brunnschweiler, G. Ensell, D. Leslie, M. A. Lee
{"title":"Design, fabrication, and packaging of closed-chamber PCR chips for DNA amplification","authors":"C. Schabmueller, A. Evans, A. Brunnschweiler, G. Ensell, D. Leslie, M. A. Lee","doi":"10.1117/12.382271","DOIUrl":null,"url":null,"abstract":"This paper reports the design, fabrication and packaging of a micro machined silicon/Pyrex based chip for the polymerase chain reaction. Anodic bonding is used for sealing the chambers of 1 (mu) l volume with a Pyrex glass wafer. Platinum resistors on the back of the wafer are used as heaters and temperature sensors. The chip is externally cooled by forced air to achieve rapid temperature cycling. The transparency of the Pyrex makes it possible for using optical readout methods. The packaging is especially designed for easy handling, filling, power connection, temperature regulation and optical readout. The mass production of such silicon reactors could make single-shot, disposable devices economically viable.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design, Test, Integration, and Packaging of MEMS/MOEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.382271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper reports the design, fabrication and packaging of a micro machined silicon/Pyrex based chip for the polymerase chain reaction. Anodic bonding is used for sealing the chambers of 1 (mu) l volume with a Pyrex glass wafer. Platinum resistors on the back of the wafer are used as heaters and temperature sensors. The chip is externally cooled by forced air to achieve rapid temperature cycling. The transparency of the Pyrex makes it possible for using optical readout methods. The packaging is especially designed for easy handling, filling, power connection, temperature regulation and optical readout. The mass production of such silicon reactors could make single-shot, disposable devices economically viable.