{"title":"A portable hardware implementation for temporal laser speckle imaging","authors":"A. Rege, B. Tyler, M. J. Brooke, K. Murari","doi":"10.1109/BioCAS.2013.6679636","DOIUrl":null,"url":null,"abstract":"We present a memory-optimized, portable hardware implementation for temporal laser speckle imaging (tLSI) consisting of a complementary metal oxide semiconductor (CMOS) image sensor, a field programmable gate array (FPGA) processor and a microSD card for storage. The system is compared to a typical benchtop setup consisting of a charge coupled device (CCD) based image sensor and a computer for imaging rat brain vasculature. The hardware implementation enables faster operation, reduced data bandwidth, lower power consumption, smaller footprint and comparable performance in terms of contrast to noise ratio and flow-fidelity. We expect these advantages to enable portable, point-of-care diagnostic imaging devices for high-resolution, high-contrast measurement of haemodynamic parameters.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a memory-optimized, portable hardware implementation for temporal laser speckle imaging (tLSI) consisting of a complementary metal oxide semiconductor (CMOS) image sensor, a field programmable gate array (FPGA) processor and a microSD card for storage. The system is compared to a typical benchtop setup consisting of a charge coupled device (CCD) based image sensor and a computer for imaging rat brain vasculature. The hardware implementation enables faster operation, reduced data bandwidth, lower power consumption, smaller footprint and comparable performance in terms of contrast to noise ratio and flow-fidelity. We expect these advantages to enable portable, point-of-care diagnostic imaging devices for high-resolution, high-contrast measurement of haemodynamic parameters.