SoK: Cryptographic Neural-Network Computation

Lucien K. L. Ng, Sherman S. M. Chow
{"title":"SoK: Cryptographic Neural-Network Computation","authors":"Lucien K. L. Ng, Sherman S. M. Chow","doi":"10.1109/SP46215.2023.10179483","DOIUrl":null,"url":null,"abstract":"We studied 53 privacy-preserving neural-network papers in 2016-2022 based on cryptography (without trusted processors or differential privacy), 16 of which only use homomorphic encryption, 19 use secure computation for inference, and 18 use non-colluding servers (among which 12 support training), solving a wide variety of research problems. We dissect their cryptographic techniques and \"love-hate relationships\" with machine learning alongside a genealogy highlighting noteworthy developments. We also re-evaluate the state of the art under WAN. We hope this can serve as a go-to guide connecting different experts in related fields.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We studied 53 privacy-preserving neural-network papers in 2016-2022 based on cryptography (without trusted processors or differential privacy), 16 of which only use homomorphic encryption, 19 use secure computation for inference, and 18 use non-colluding servers (among which 12 support training), solving a wide variety of research problems. We dissect their cryptographic techniques and "love-hate relationships" with machine learning alongside a genealogy highlighting noteworthy developments. We also re-evaluate the state of the art under WAN. We hope this can serve as a go-to guide connecting different experts in related fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加密神经网络计算
我们研究了2016-2022年基于密码学(无可信处理器或差分隐私)的53篇保护隐私的神经网络论文,其中16篇仅使用同态加密,19篇使用安全计算进行推理,18篇使用非串通服务器(其中12篇支持训练),解决了各种各样的研究问题。我们剖析了他们的加密技术和机器学习的“爱恨关系”,并列出了值得注意的发展。我们还重新评估了WAN下的技术状况。我们希望这能成为连接相关领域不同专家的首选指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TeSec: Accurate Server-side Attack Investigation for Web Applications PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle One Key to Rule Them All: Secure Group Pairing for Heterogeneous IoT Devices SoK: Cryptographic Neural-Network Computation SoK: A Critical Evaluation of Efficient Website Fingerprinting Defenses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1