Investigation of High-Strength Electroformed Ni for Microprobes

T. Kimura, N. Arita, H. Fukinbara, T. Hattori
{"title":"Investigation of High-Strength Electroformed Ni for Microprobes","authors":"T. Kimura, N. Arita, H. Fukinbara, T. Hattori","doi":"10.1299/JSMEA.49.79","DOIUrl":null,"url":null,"abstract":"We have developed a microprobe that achieves low contact resistance under low contact force only for gold pads. However, in the case of Al pads, an oxide layer formed on the aluminum pad surface obstructs stable contacting, so higher contact force with a strong probe is required. The present study attempts to enhance the strength of the probe material by improving its mechanical properties. It is said that grain downsizing, functionally alloying, or impurity addition can increase material strength. Our study has adopted impurity addition to the electroforming bath because the process can be controlled. Thus, high-strength electroformed Ni has successfully been obtained. Improved Ni has a high Vickers hardness of Hv600 compared with Hv450 for conventional nickel, and a high Young’s modulus of E=200GPa compared with E=150GPa for conventional nickel.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We have developed a microprobe that achieves low contact resistance under low contact force only for gold pads. However, in the case of Al pads, an oxide layer formed on the aluminum pad surface obstructs stable contacting, so higher contact force with a strong probe is required. The present study attempts to enhance the strength of the probe material by improving its mechanical properties. It is said that grain downsizing, functionally alloying, or impurity addition can increase material strength. Our study has adopted impurity addition to the electroforming bath because the process can be controlled. Thus, high-strength electroformed Ni has successfully been obtained. Improved Ni has a high Vickers hardness of Hv600 compared with Hv450 for conventional nickel, and a high Young’s modulus of E=200GPa compared with E=150GPa for conventional nickel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微探针用高强度电铸镍的研究
我们开发了一种微探头,可以在低接触力下实现低接触电阻,仅适用于金垫。然而,在Al衬垫的情况下,铝衬垫表面形成的氧化层阻碍了稳定的接触,因此需要更高的接触力和强大的探头。本研究试图通过改善探针材料的力学性能来提高其强度。据说晶粒缩小、功能性合金化或杂质的加入可以提高材料的强度。本研究采用了在电铸液中添加杂质的方法,因为这一过程是可控的。因此,成功地获得了高强度电铸镍。改进镍的维氏硬度为Hv600,高于常规镍的Hv450;杨氏模量为E=200GPa,高于常规镍的E=150GPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Initiation of the Interfacial Debonding in Single Fiber Composite Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation Two Collinear Interface Cracks between Two Dissimilar Functionally Graded Piezoelectric/Piezomagnetic Material Layers under Anti-Plane Shear Loading Investigation the Dynamic Interaction between Two Collinear Cracks in the Functionally Graded Piezoelectric Materials Subjected to the Harmonic Anti-Plane Shear Stress Waves by Using the Non-Local Theory Development of a Finite Element Contact Analysis Algorithm to Pass the Patch Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1