Investigation the Dynamic Interaction between Two Collinear Cracks in the Functionally Graded Piezoelectric Materials Subjected to the Harmonic Anti-Plane Shear Stress Waves by Using the Non-Local Theory

Jun Liang
{"title":"Investigation the Dynamic Interaction between Two Collinear Cracks in the Functionally Graded Piezoelectric Materials Subjected to the Harmonic Anti-Plane Shear Stress Waves by Using the Non-Local Theory","authors":"Jun Liang","doi":"10.1299/JSMEA.49.570","DOIUrl":null,"url":null,"abstract":"In this paper, the non-local theory of elasticity is applied to obtain the dynamic interaction between two collinear cracks in functionally graded piezoelectric materials under the harmonic anti-plane shear stress waves for the permeable electric boundary conditions. To make the analysis tractable, it is assumed that the material properties vary exponentially with coordinate vertical to the crack. By means of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations that the unknown variable is the jump of the displacement across the crack surfaces. These equations are solved by use of the Schmidt method. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularities are present at the crack tips. The non-local elastic solutions yield a finite stress at the crack tips, thus allows us to use the maximum stress as a fracture criterion. The finite stresses at the crack tips depend on the crack length, the distance between two cracks, the functionally graded parameter, the circular frequency of the incident waves and the lattice parameter of the materials, respectively.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the non-local theory of elasticity is applied to obtain the dynamic interaction between two collinear cracks in functionally graded piezoelectric materials under the harmonic anti-plane shear stress waves for the permeable electric boundary conditions. To make the analysis tractable, it is assumed that the material properties vary exponentially with coordinate vertical to the crack. By means of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations that the unknown variable is the jump of the displacement across the crack surfaces. These equations are solved by use of the Schmidt method. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularities are present at the crack tips. The non-local elastic solutions yield a finite stress at the crack tips, thus allows us to use the maximum stress as a fracture criterion. The finite stresses at the crack tips depend on the crack length, the distance between two cracks, the functionally graded parameter, the circular frequency of the incident waves and the lattice parameter of the materials, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用非局域理论研究了反平面剪应力波作用下功能梯度压电材料共线裂纹间的动力相互作用
本文应用非局部弹性理论,得到了功能梯度压电材料在反平面剪应力波谐波作用下的共线裂纹间的动态相互作用。为了便于分析,假设材料性能随垂直于裂纹的坐标呈指数变化。利用傅里叶变换,用以裂纹表面位移跳变为未知变量的一对三重积分方程来求解该问题。用施米特方法求解了这些方程。与经典的弹性解不同,在裂纹尖端不存在应力和电位移奇点。非局部弹性解在裂纹尖端处产生有限应力,因此允许我们使用最大应力作为断裂准则。裂纹尖端的有限应力分别与裂纹长度、裂纹间距、功能梯度参数、入射波的圆频率和材料的晶格参数有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Initiation of the Interfacial Debonding in Single Fiber Composite Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation Two Collinear Interface Cracks between Two Dissimilar Functionally Graded Piezoelectric/Piezomagnetic Material Layers under Anti-Plane Shear Loading Investigation the Dynamic Interaction between Two Collinear Cracks in the Functionally Graded Piezoelectric Materials Subjected to the Harmonic Anti-Plane Shear Stress Waves by Using the Non-Local Theory Development of a Finite Element Contact Analysis Algorithm to Pass the Patch Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1