Identification of Power Quality Disturbances in DG Integrated Power System based on Deep Learning Approach

Kanyanach Ritthanont, Natin Janjamraj, P. Apiratikul, K. Bhumkittipich
{"title":"Identification of Power Quality Disturbances in DG Integrated Power System based on Deep Learning Approach","authors":"Kanyanach Ritthanont, Natin Janjamraj, P. Apiratikul, K. Bhumkittipich","doi":"10.1109/ICPEI55293.2022.9987085","DOIUrl":null,"url":null,"abstract":"Nowadays, power distribution systems are increasingly integrated with different loads, and distributed generators cause power quality (PQ) disturbances. Therefore, the implementation of deep learning is one of the advanced technologies following the trends of energy 4.0 for the classification and identification of power quality disturbances for smart energy monitoring. This paper presents the methodology to identify voltage sag, voltage swell, and voltage interruption according to the IEEE 1159 proposed DG integrated power system. The simulation results showed that the accuracies of proposed identification have better performance than that of the conventional neural network.","PeriodicalId":223538,"journal":{"name":"2022 International Conference on Power, Energy and Innovations (ICPEI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI55293.2022.9987085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, power distribution systems are increasingly integrated with different loads, and distributed generators cause power quality (PQ) disturbances. Therefore, the implementation of deep learning is one of the advanced technologies following the trends of energy 4.0 for the classification and identification of power quality disturbances for smart energy monitoring. This paper presents the methodology to identify voltage sag, voltage swell, and voltage interruption according to the IEEE 1159 proposed DG integrated power system. The simulation results showed that the accuracies of proposed identification have better performance than that of the conventional neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习方法的DG集成电力系统电能质量干扰辨识
目前,配电系统越来越多地集成了不同的负载,分布式发电机造成了电能质量(PQ)扰动。因此,实施深度学习是顺应能源4.0趋势的先进技术之一,用于对电能质量干扰进行分类和识别,以实现智能能源监测。本文根据IEEE 1159标准提出了一种识别电压暂降、电压膨胀和电压中断的方法。仿真结果表明,该方法的识别精度优于传统神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Power Quality Disturbances in DG Integrated Power System based on Deep Learning Approach Input Impedance and Performance Analysis of Series-Fed Microstrip Patch Array Antenna Life Assessment of Transmission Line Using Historical Health Index A Compact Wideband Monopole Antenna for Indoor Positioning System Partial Discharge Measurement of Multi-void Inside Solid Insulation under AC and VLF Voltage Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1