Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection

Lin Feng, Le Wang, Bo Jin
{"title":"Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection","authors":"Lin Feng, Le Wang, Bo Jin","doi":"10.4156/JCIT.VOL5.ISSUE10.9","DOIUrl":null,"url":null,"abstract":"Frequent pattern outlier factor is used to detect outliers with complete frequent itemsets. But it is difficult in real-world time-series data streams application because of its low efficiency. In this paper, we propose a novel maximal frequent pattern outlier factor (MFPOF) and an outlier detection algorithm (OODFP) for online high-dimensional time-series outlier detection. Firstly, the time-series data streams are processed with sliding window to discover maximal frequent itemsets. Then the frequent patterns are simplified to compute the MFPOF of time-series data streams. Experimental results show that our approach not only provides higher efficiency, but also equivalent accuracy.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE10.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Frequent pattern outlier factor is used to detect outliers with complete frequent itemsets. But it is difficult in real-world time-series data streams application because of its low efficiency. In this paper, we propose a novel maximal frequent pattern outlier factor (MFPOF) and an outlier detection algorithm (OODFP) for online high-dimensional time-series outlier detection. Firstly, the time-series data streams are processed with sliding window to discover maximal frequent itemsets. Then the frequent patterns are simplified to compute the MFPOF of time-series data streams. Experimental results show that our approach not only provides higher efficiency, but also equivalent accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线高维时间序列离群点检测中最大频繁模式离群因子的研究
频繁模式异常因子用于检测具有完整频繁项集的异常值。但由于其效率较低,难以在实际时间序列数据流中应用。本文提出了一种新的最大频繁模式异常因子(MFPOF)和一种在线高维时间序列异常检测算法(OODFP)。首先,对时间序列数据流进行滑动窗口处理,发现最大频繁项集;然后对频繁模式进行简化,计算时间序列数据流的MFPOF。实验结果表明,该方法不仅具有较高的效率,而且具有相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection Spirit: Security and Privacy in Real-Time Monitoring System Integrating Product Information Management (PIM) with Internet-Mediated Transactions (IMTs) Area Optimization in Floorplanning Using AP-TCG People Summarization by Combining Named Entity Recognition and Relation Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1