Enhancement of Efficiency of Military Cloud Computing using Lanchester Model

Choe Hyeon, Sagaya Aurelia
{"title":"Enhancement of Efficiency of Military Cloud Computing using Lanchester Model","authors":"Choe Hyeon, Sagaya Aurelia","doi":"10.1109/I-SMAC49090.2020.9243515","DOIUrl":null,"url":null,"abstract":"Cloud computing is a technology that uses centrally processed computing resources over the Internet by a large number of users. Because many requests are concentrated on cloud servers, they must be properly distributed to avoid degradation of quality. Load balancing categorizes requests from users according to established algorithms and assigns appropriate virtual machines. Because load balancing algorithms are developed according to the cloud's usage environment, various algorithms are being utilized. Recently, government agencies are also interested in introducing cloud technologies beyond private sectors. Many militaries have selected Cloud as its basic task to apply new technologies such as AI to military operations. However, there is no precedent for military cloud development, and the lack of doud technology research considering the operational environment has delayed the progress of cloud adoption. The algorithm presented by this paper makes the combat power, which varies according to the importance of the operation, an important variable. This variable makes each user's access to computing resources different. Although similar to other dynamic algorithms, the impact of priorities is so big that the degree of imbalance between tasks was higher.","PeriodicalId":432766,"journal":{"name":"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC49090.2020.9243515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing is a technology that uses centrally processed computing resources over the Internet by a large number of users. Because many requests are concentrated on cloud servers, they must be properly distributed to avoid degradation of quality. Load balancing categorizes requests from users according to established algorithms and assigns appropriate virtual machines. Because load balancing algorithms are developed according to the cloud's usage environment, various algorithms are being utilized. Recently, government agencies are also interested in introducing cloud technologies beyond private sectors. Many militaries have selected Cloud as its basic task to apply new technologies such as AI to military operations. However, there is no precedent for military cloud development, and the lack of doud technology research considering the operational environment has delayed the progress of cloud adoption. The algorithm presented by this paper makes the combat power, which varies according to the importance of the operation, an important variable. This variable makes each user's access to computing resources different. Although similar to other dynamic algorithms, the impact of priorities is so big that the degree of imbalance between tasks was higher.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Lanchester模型提高军事云计算效率
云计算是一种利用大量用户在互联网上集中处理的计算资源的技术。由于许多请求集中在云服务器上,因此必须对它们进行适当的分发,以避免质量下降。负载平衡根据已建立的算法对来自用户的请求进行分类,并分配适当的虚拟机。由于负载均衡算法是根据云的使用环境开发的,因此正在使用各种算法。最近,政府机构也有兴趣在私营部门之外引入云技术。许多军队选择云作为其基本任务,将人工智能等新技术应用于军事行动。然而,军事云的发展没有先例,缺乏考虑到作战环境的云技术研究,推迟了云采用的进展。该算法将作战能力作为一个重要变量,作战能力随作战任务的重要程度而变化。这个变量使得每个用户访问计算资源的方式不同。虽然与其他动态算法相似,但优先级的影响很大,任务之间的不平衡程度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Extractive Text Summarizer Using The Elmo Embedding Design of Cost-effective Wearable Sensors with integrated Health Monitoring System Comparison of Tuplet of Techniques for Facial Emotion Detection Enhancement of Efficiency of Military Cloud Computing using Lanchester Model 5G Technologies and Tourism Environmental Carrying Capacity based on Planning Optimization with Remote Sensing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1