Phonon-induced spin relaxation of conduction electrons in silicon crystals

D. P. Adorno, N. Pizzolato, C. Graceffa
{"title":"Phonon-induced spin relaxation of conduction electrons in silicon crystals","authors":"D. P. Adorno, N. Pizzolato, C. Graceffa","doi":"10.1109/IWCE.2014.6865863","DOIUrl":null,"url":null,"abstract":"Experimental works managing electrical injection of spin polarization in n-type and p-type silicon have been recently carried out up to room-temperature. In spite of these promising experimental results, a comprehensive theoretical framework concerning the influence of transport conditions on phonon-induced electron spin depolarization in silicon structures, in a wide range of values of lattice temperature, doping concentration and amplitude of external fields, is still at a developing stage. In order to investigate the spin transport of conduction electrons in lightly doped n-type Si crystals, a set of semiclassical multiparticle Monte Carlo simulations has been carried out. The mean spin depolarization time and length of drifting electrons, heated by an electric field, have been calculated. A good agreement is found between our numerical findings and those computed by using different theoretical approaches and recent experimental results obtained in spin transport devices. Our Monte Carlo outcomes, in ranges of temperature and field amplitude yet unexplored, can be used as a guide for future experimental studies oriented towards a more effective optimization of room-temperature silicon-based spintronic devices.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Experimental works managing electrical injection of spin polarization in n-type and p-type silicon have been recently carried out up to room-temperature. In spite of these promising experimental results, a comprehensive theoretical framework concerning the influence of transport conditions on phonon-induced electron spin depolarization in silicon structures, in a wide range of values of lattice temperature, doping concentration and amplitude of external fields, is still at a developing stage. In order to investigate the spin transport of conduction electrons in lightly doped n-type Si crystals, a set of semiclassical multiparticle Monte Carlo simulations has been carried out. The mean spin depolarization time and length of drifting electrons, heated by an electric field, have been calculated. A good agreement is found between our numerical findings and those computed by using different theoretical approaches and recent experimental results obtained in spin transport devices. Our Monte Carlo outcomes, in ranges of temperature and field amplitude yet unexplored, can be used as a guide for future experimental studies oriented towards a more effective optimization of room-temperature silicon-based spintronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅晶体中传导电子的声子诱导自旋弛豫
在室温下,对n型和p型硅中自旋极化的电注入进行了实验研究。尽管有这些令人鼓舞的实验结果,但在晶格温度、掺杂浓度和外场振幅的大范围范围内,关于输运条件对硅结构中声子诱导的电子自旋去极化影响的综合理论框架仍处于发展阶段。为了研究轻掺杂n型Si晶体中传导电子的自旋输运,进行了一套半经典多粒子蒙特卡罗模拟。计算了在电场加热下漂移电子的平均自旋退极化时间和长度。本文的数值计算结果与用不同理论方法计算的结果和最近在自旋输运装置中得到的实验结果吻合得很好。我们的蒙特卡罗结果,在温度和场振幅范围内尚未探索,可以用作未来实验研究的指南,以更有效地优化室温硅基自旋电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understandable algorithm for exchange interaction: Quantum noise in nanoelectronic devices Calculation of electron-phonon interaction strength from first principles in graphene and silicon Phonon-induced spin relaxation of conduction electrons in silicon crystals Modulation of bandgap and current in Graphene/BN heterostructures by tuning the transverse electric field Gunn Effect in n-InP MOSFET at positive gate bias and impact ionization conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1