Swarm Intelligence for Electrical Design Space Exploration

N. Singh, B. Mutnury, C. Wesley, N. Pham, E. Matoglu, M. Cases, D. de Araujo
{"title":"Swarm Intelligence for Electrical Design Space Exploration","authors":"N. Singh, B. Mutnury, C. Wesley, N. Pham, E. Matoglu, M. Cases, D. de Araujo","doi":"10.1109/EPEP.2007.4387113","DOIUrl":null,"url":null,"abstract":"Today's high speed electrical systems exhibit ever increasing complexity generation after generation. This increased complexity results in additional design parameters which the system designer must choose carefully to obtain the optimum design. Often, the number of these design variables is large enough that a brute-force search of the design space is not feasible. Statistical techniques like design of experiments (DoE) cannot accurately find the best and worst case corners. This paper introduces the concept of swarm intelligence for the first time for electrical design space exploration. Specifically, the discrete particle swarm optimization (PSO) is used to arrive at an optimum combination of design parameters for various electrical interfaces. The PSO algorithm is shown to have great potential as a robust and efficient alternative to statistical techniques currently used in high speed electrical design optimization.","PeriodicalId":402571,"journal":{"name":"2007 IEEE Electrical Performance of Electronic Packaging","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Electrical Performance of Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2007.4387113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Today's high speed electrical systems exhibit ever increasing complexity generation after generation. This increased complexity results in additional design parameters which the system designer must choose carefully to obtain the optimum design. Often, the number of these design variables is large enough that a brute-force search of the design space is not feasible. Statistical techniques like design of experiments (DoE) cannot accurately find the best and worst case corners. This paper introduces the concept of swarm intelligence for the first time for electrical design space exploration. Specifically, the discrete particle swarm optimization (PSO) is used to arrive at an optimum combination of design parameters for various electrical interfaces. The PSO algorithm is shown to have great potential as a robust and efficient alternative to statistical techniques currently used in high speed electrical design optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子设计空间探索的群体智能
今天的高速电气系统一代又一代地呈现出日益增长的复杂性。这种增加的复杂性导致了额外的设计参数,系统设计者必须仔细选择以获得最佳设计。通常,这些设计变量的数量足够大,以至于对设计空间进行强力搜索是不可行的。像实验设计(DoE)这样的统计技术不能准确地找到最好和最坏的情况。本文首次将群体智能的概念引入到电气设计空间探索中。具体地说,采用离散粒子群优化(PSO)来获得各种电接口设计参数的最优组合。粒子群算法作为一种鲁棒和高效的替代目前用于高速电气设计优化的统计技术,显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel Simulation of High-Speed Interconnects using Delay Extraction and Transverse Partitioning Fast ISI Characterization of Passive Channels Using Extreme Value Distribution Efficient, Automatic Model Order Determination and Model Generation for Tabulated S-parameters A Hybrid Electromagnetic Bandgap (EBG) Power Plane with Discrete Inductors for Broadband Noise Suppression Swarm Intelligence for Electrical Design Space Exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1