OntG-Bart: Ontology-Infused Clinical Abstractive Summarization

Sajad Sotudeh, Nazli Goharian
{"title":"OntG-Bart: Ontology-Infused Clinical Abstractive Summarization","authors":"Sajad Sotudeh, Nazli Goharian","doi":"10.1145/3573128.3609346","DOIUrl":null,"url":null,"abstract":"Automating the process of clinical text summarization could save clinicians' reading time and reduce their fatigue, acknowledging the necessity of human professionals in the loop. This paper addresses clinical text summarization, aiming to incorporate ontology concept relationships via a Graph Neural Network (GNN) into the summarization process. Specifically, we propose a model, extending Bart's encoder-decoder framework with GNN encoder and multi-head attentional layers for decoder, producing ontology-aware summaries. This GNN interacts with the textual encoder, influencing their mutual representations. The model's effectiveness is validated on two real-world radiology datasets. We also present an ablation study to elucidate the impact of varied graph configurations and an error analysis aimed at pinpointing potential areas for future improvements.","PeriodicalId":310776,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering 2023","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573128.3609346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automating the process of clinical text summarization could save clinicians' reading time and reduce their fatigue, acknowledging the necessity of human professionals in the loop. This paper addresses clinical text summarization, aiming to incorporate ontology concept relationships via a Graph Neural Network (GNN) into the summarization process. Specifically, we propose a model, extending Bart's encoder-decoder framework with GNN encoder and multi-head attentional layers for decoder, producing ontology-aware summaries. This GNN interacts with the textual encoder, influencing their mutual representations. The model's effectiveness is validated on two real-world radiology datasets. We also present an ablation study to elucidate the impact of varied graph configurations and an error analysis aimed at pinpointing potential areas for future improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OntG-Bart:本体论注入临床摘要
临床文本摘要的自动化过程可以节省临床医生的阅读时间,减少他们的疲劳,承认人类专业人员在循环中的必要性。本文研究临床文本摘要,旨在通过图神经网络(GNN)将本体概念关系纳入摘要过程。具体来说,我们提出了一个模型,用GNN编码器和解码器的多头注意层扩展Bart的编码器-解码器框架,产生本体感知摘要。这个GNN与文本编码器交互,影响它们的相互表示。在两个真实的放射学数据集上验证了该模型的有效性。我们还提出了一项消融研究,以阐明不同图形配置的影响,并进行了误差分析,旨在确定未来改进的潜在领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OntG-Bart: Ontology-Infused Clinical Abstractive Summarization Deep-learning for dysgraphia detection in children handwritings Addressing the gap between current language models and key-term-based clustering YinYang, a Fast and Robust Adaptive Document Image Binarization for Optical Character Recognition Automatically Labeling Cyber Threat Intelligence reports using Natural Language Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1