Deep-learning for dysgraphia detection in children handwritings

Andrea Gemelli, S. Marinai, Emanuele Vivoli, T. Zappaterra
{"title":"Deep-learning for dysgraphia detection in children handwritings","authors":"Andrea Gemelli, S. Marinai, Emanuele Vivoli, T. Zappaterra","doi":"10.1145/3573128.3609351","DOIUrl":null,"url":null,"abstract":"Early identification of dysgraphia in children is crucial for timely intervention and support. Traditional methods, such as the Brave Handwriting Kinder (BHK) test, which relies on manual scoring of handwritten sentences, are both time-consuming and subjective posing challenges in accurate and efficient diagnosis. In this paper, an approach for dysgraphia detection by leveraging smart pens and deep learning techniques is proposed, automatically extracting visual features from children's handwriting samples. To validate the solution, samples of children handwritings have been gathered and several interviews with domain experts have been conducted. The approach has been compared with an algorithmic version of the BHK test and with several elementary school teachers' interviews.","PeriodicalId":310776,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering 2023","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573128.3609351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early identification of dysgraphia in children is crucial for timely intervention and support. Traditional methods, such as the Brave Handwriting Kinder (BHK) test, which relies on manual scoring of handwritten sentences, are both time-consuming and subjective posing challenges in accurate and efficient diagnosis. In this paper, an approach for dysgraphia detection by leveraging smart pens and deep learning techniques is proposed, automatically extracting visual features from children's handwriting samples. To validate the solution, samples of children handwritings have been gathered and several interviews with domain experts have been conducted. The approach has been compared with an algorithmic version of the BHK test and with several elementary school teachers' interviews.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
儿童书写困难的深度学习检测
儿童书写障碍的早期识别对于及时干预和支持至关重要。传统的方法,如Brave Handwriting Kinder (BHK)测试,依赖于手写句子的人工评分,既耗时又主观,对准确高效的诊断提出了挑战。本文提出了一种利用智能笔和深度学习技术自动提取儿童笔迹样本视觉特征的书写障碍检测方法。为了验证该解决方案,收集了儿童手迹样本,并与领域专家进行了多次访谈。该方法已与BHK测试的算法版本和几位小学教师的访谈进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OntG-Bart: Ontology-Infused Clinical Abstractive Summarization Deep-learning for dysgraphia detection in children handwritings Addressing the gap between current language models and key-term-based clustering YinYang, a Fast and Robust Adaptive Document Image Binarization for Optical Character Recognition Automatically Labeling Cyber Threat Intelligence reports using Natural Language Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1