{"title":"Simulation of SAGCM structure InGaAs/InP SPAD using COMSOL multiphysics","authors":"Rui Yang","doi":"10.1117/12.2664526","DOIUrl":null,"url":null,"abstract":"InGaAs/InP single photon avalanche photodiode (SPAD) is important for quantum communication, and LIDAR applications in the near-infrared (NIR) wavelength range, between 0.9 µm and 1.7 µm. Compared with other optoelectronic devices, SPAD has two main advantages: high quantum efficiency and high detection efficiency. In this study, the design and simulating of a separate absorption, grading, charge, and multiplication (SAGCM) structure InGaAs/InP SPAD were conducted by using COMSOL Multiphysics. The electric-field distribution was studied under the given thickness and dopant concentration of each layer of the SPAD. It was found that the edge pre-breakdown of planar-type SPAD resulted from the intense electric field at the junction bend can be prevent from happening by using gaussian type dopant distribution profile. The punch-through voltage and the breakdown voltage were also focused. The results show that the punch-through voltage and the breakdown voltage was 55 V and 65V respectively. In addition, the electric field nonuniformity of the avalanche area increases greatly after the bias voltage exceeded the punch-through voltage.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space From Infrared to Terahertz (ESIT 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2664526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
InGaAs/InP single photon avalanche photodiode (SPAD) is important for quantum communication, and LIDAR applications in the near-infrared (NIR) wavelength range, between 0.9 µm and 1.7 µm. Compared with other optoelectronic devices, SPAD has two main advantages: high quantum efficiency and high detection efficiency. In this study, the design and simulating of a separate absorption, grading, charge, and multiplication (SAGCM) structure InGaAs/InP SPAD were conducted by using COMSOL Multiphysics. The electric-field distribution was studied under the given thickness and dopant concentration of each layer of the SPAD. It was found that the edge pre-breakdown of planar-type SPAD resulted from the intense electric field at the junction bend can be prevent from happening by using gaussian type dopant distribution profile. The punch-through voltage and the breakdown voltage were also focused. The results show that the punch-through voltage and the breakdown voltage was 55 V and 65V respectively. In addition, the electric field nonuniformity of the avalanche area increases greatly after the bias voltage exceeded the punch-through voltage.