Implementation of a Current Linear Regulator Based on a GaN HEMT for Laser Diode Manipulations

Kai-Jun Pai, Chang-Hua Lin
{"title":"Implementation of a Current Linear Regulator Based on a GaN HEMT for Laser Diode Manipulations","authors":"Kai-Jun Pai, Chang-Hua Lin","doi":"10.23919/ICPE2023-ECCEAsia54778.2023.10213598","DOIUrl":null,"url":null,"abstract":"In this study, a gallium nitride (GaN) high electron mobility transistor (HEMT) combined with the operational amplifier was applied to develop a two-level linear regulator (TLLR). Using the TLLR, the operating current of the laser diode can be formed in the constant-current or pulse-width modulation mode to emit the continuous-wave or short-pulsed laser, respectively. When the operating current of the laser diode was operated at the high-frequency PWM, the parasitic elements on the GaN HEMT, laser diodes, print-circuit board (PCB), and power wires influence the rising-edge slope of the laser operating current. In accordance with the physical packages of the GaN HEMT and laser diode, their equivalent circuit model parameters were provided in this study; therefore, the TLLR simulation circuit with its parasitic element was established. The simulation and experiment waveforms can be obtained to confirm the developed TLLR.","PeriodicalId":151155,"journal":{"name":"2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICPE2023-ECCEAsia54778.2023.10213598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a gallium nitride (GaN) high electron mobility transistor (HEMT) combined with the operational amplifier was applied to develop a two-level linear regulator (TLLR). Using the TLLR, the operating current of the laser diode can be formed in the constant-current or pulse-width modulation mode to emit the continuous-wave or short-pulsed laser, respectively. When the operating current of the laser diode was operated at the high-frequency PWM, the parasitic elements on the GaN HEMT, laser diodes, print-circuit board (PCB), and power wires influence the rising-edge slope of the laser operating current. In accordance with the physical packages of the GaN HEMT and laser diode, their equivalent circuit model parameters were provided in this study; therefore, the TLLR simulation circuit with its parasitic element was established. The simulation and experiment waveforms can be obtained to confirm the developed TLLR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GaN HEMT的激光二极管操作电流线性调节器的实现
本研究将氮化镓(GaN)高电子迁移率晶体管(HEMT)与运算放大器相结合,开发了一种双电平线性稳压器(TLLR)。利用TLLR,可以使激光二极管的工作电流以恒流或脉宽调制方式形成,分别发射连续波或短脉冲激光。当激光二极管的工作电流在高频PWM下工作时,GaN HEMT、激光二极管、印刷电路板(PCB)和电源线上的寄生元件影响激光工作电流的上升沿斜率。根据GaN HEMT和激光二极管的物理封装,给出了它们的等效电路模型参数;因此,建立了带有寄生元件的TLLR仿真电路。仿真和实验波形验证了所设计的TLLR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Common Mode Noise Current Path in a SiC Power Module Near Unity Power Factor Using Non-inverting Boost-Buck Converter with Programmed PWM Neutral-Point Voltage Regulation of Three-Level Neutral-Point Clamped Converter for LVDC Power Distribution Application Analysis of Overcurrent Protection for Topology Morphing LLC Converters by Diode Clamping applicable to EV chargers Statistical Post-Processing in Ensemble Learning-based State of Health Estimation for Lithium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1