Trend analysis for power quality parameters based on long-term measurement campaigns

M. Domagk, Jan Meyer, Tongxun Wang, D. Feng, Wei Huang, H. Mayer, Simon Wenig, M. Lindner, Jan-Hendrik Amrhein
{"title":"Trend analysis for power quality parameters based on long-term measurement campaigns","authors":"M. Domagk, Jan Meyer, Tongxun Wang, D. Feng, Wei Huang, H. Mayer, Simon Wenig, M. Lindner, Jan-Hendrik Amrhein","doi":"10.1109/ICHQP53011.2022.9808645","DOIUrl":null,"url":null,"abstract":"Power grids face significant changes, like increase of renewables or large-scale introduction of electric vehicles. This has a significant impact on Power Quality and consequently network operators install an increasing number of Power Quality instruments to monitor their networks. To analyse these large amounts of data in an efficient way, automatic data mining methods are required. This paper presents a method to identify long-term trends in time series of continuous Power Quality parameters, which can support network operators with the early detection of fundamental changes in Power Quality levels. This information can e.g. support the asset management or network planning in optimizing the costs for managing Power Quality levels. The method is applied to field measurements (3 years at 24 sites) taken from Chinese and German 110-kV-network.","PeriodicalId":249133,"journal":{"name":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP53011.2022.9808645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power grids face significant changes, like increase of renewables or large-scale introduction of electric vehicles. This has a significant impact on Power Quality and consequently network operators install an increasing number of Power Quality instruments to monitor their networks. To analyse these large amounts of data in an efficient way, automatic data mining methods are required. This paper presents a method to identify long-term trends in time series of continuous Power Quality parameters, which can support network operators with the early detection of fundamental changes in Power Quality levels. This information can e.g. support the asset management or network planning in optimizing the costs for managing Power Quality levels. The method is applied to field measurements (3 years at 24 sites) taken from Chinese and German 110-kV-network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于长期测量活动的电能质量参数趋势分析
电网面临重大变化,如可再生能源的增加或大规模引入电动汽车。这对电能质量产生了重大影响,因此网络运营商安装了越来越多的电能质量仪器来监控他们的网络。为了有效地分析这些大量的数据,需要自动数据挖掘方法。本文提出了一种识别连续电能质量参数时间序列长期趋势的方法,可以支持网络运营商早期发现电能质量水平的根本变化。例如,这些信息可以支持资产管理或网络规划,以优化管理电能质量水平的成本。该方法应用于中国和德国110 kv网络3年24个站点的实测数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage-Current Ratio Difference Method: Recommended for IEEE Standard 1547 to Determine the Customer Harmonic Contribution Operation of a Distributed Generation Plant in a Power Supply System with Non-linear and Asymmetric Load Trend analysis for power quality parameters based on long-term measurement campaigns Power Quality Data Platform for Analysis and Location of Voltage Dips: a Preliminary Study Classification of Scalogram Signatures for Power Quality Disturbances Using Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1