Towards a behavioral network intrusion detection system based on the SVM model

Anouar Bachar, Noureddine El Makhfi, Omar El Bannay
{"title":"Towards a behavioral network intrusion detection system based on the SVM model","authors":"Anouar Bachar, Noureddine El Makhfi, Omar El Bannay","doi":"10.1109/IRASET48871.2020.9092094","DOIUrl":null,"url":null,"abstract":"A behavioral IDS (Intrusion Detection System) is an effective tool for the detection of computer network intrusions, especially the most recent ones. However, the behavioral IDS have a very high false alarm rate compared to traditional IDS that use a signature base for each intrusion. In this paper, we propose an original method of network intrusion detection using machine learning techniques. Our method is based on a behavioral IDS capable of identifying new attacks without using a signature database. We use the SVM (Support Vector Machine) classification model with two cores (Polynomial and Gaussian). This model is trained and tested with the UNSW-NB15 dataset. We have obtained interesting results in terms of detection rate (DR) in comparison with other classification models (ANN, RepTree, Random Forest, MLP).","PeriodicalId":271840,"journal":{"name":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET48871.2020.9092094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A behavioral IDS (Intrusion Detection System) is an effective tool for the detection of computer network intrusions, especially the most recent ones. However, the behavioral IDS have a very high false alarm rate compared to traditional IDS that use a signature base for each intrusion. In this paper, we propose an original method of network intrusion detection using machine learning techniques. Our method is based on a behavioral IDS capable of identifying new attacks without using a signature database. We use the SVM (Support Vector Machine) classification model with two cores (Polynomial and Gaussian). This model is trained and tested with the UNSW-NB15 dataset. We have obtained interesting results in terms of detection rate (DR) in comparison with other classification models (ANN, RepTree, Random Forest, MLP).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SVM模型的行为网络入侵检测系统
行为入侵检测系统(IDS)是检测计算机网络入侵,特别是最新入侵的有效工具。然而,与对每个入侵使用签名库的传统IDS相比,行为IDS具有非常高的误报率。在本文中,我们提出了一种使用机器学习技术的网络入侵检测方法。我们的方法是基于一种行为IDS,能够在不使用特征库的情况下识别新的攻击。我们使用支持向量机(SVM)两核(多项式和高斯)分类模型。该模型使用UNSW-NB15数据集进行训练和测试。与其他分类模型(ANN, RepTree, Random Forest, MLP)相比,我们在检出率(DR)方面获得了有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conception of a Training System for Emergency Situation Managers Optimization by the Response Surface Methodology of Color Optimal Control of Wind Energy Generation System Synthesis and Characterisation of Anhydrous Proton Conducting Membranes Based on Sulfonated Poly(vinyl alcohol) and Silicotungstic Acid with or without Silica for Fuel Cell Applications Towards a behavioral network intrusion detection system based on the SVM model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1