Performance of SVPWM based vector controlled HVDC light transmission system under balanced fault condition

M. A. Kumar, N. V. Srikanth
{"title":"Performance of SVPWM based vector controlled HVDC light transmission system under balanced fault condition","authors":"M. A. Kumar, N. V. Srikanth","doi":"10.1109/PECI.2013.6506057","DOIUrl":null,"url":null,"abstract":"The recent developments in power electronics technology have lead to the improvements of insulated gate bipolar transistor (IGBT) based Voltage source converter High voltage direct current (VSC HVDC) transmission systems. These are also commercially known as HVDC Light transmission systems, which are popular in renewable, micro grid, and electric power systems. Out of different pulse width modulation (PWM) schemes, Space vector PWM (SVPWM) control scheme finds growing importance in HVDC Light applications because of its better dc bus utilization. In this paper, SVPWM scheme is utilized to control the HVDC Light system in order to achieve better DC bus utilization, harmonic reduction, and for reduced power fluctuations. The simulations are carried out in the MATLAB/SIMULINK environment and the results are provided for steady state and dynamic conditions. Finally, the performance of SVPWM based vector controlled HVDC Light transmission system is compared with sinusoidal pulse width modulation (SPWM) based HVDC Light system in terms of output voltage and total harmonic distortion (THD).","PeriodicalId":113021,"journal":{"name":"2013 IEEE Power and Energy Conference at Illinois (PECI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2013.6506057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The recent developments in power electronics technology have lead to the improvements of insulated gate bipolar transistor (IGBT) based Voltage source converter High voltage direct current (VSC HVDC) transmission systems. These are also commercially known as HVDC Light transmission systems, which are popular in renewable, micro grid, and electric power systems. Out of different pulse width modulation (PWM) schemes, Space vector PWM (SVPWM) control scheme finds growing importance in HVDC Light applications because of its better dc bus utilization. In this paper, SVPWM scheme is utilized to control the HVDC Light system in order to achieve better DC bus utilization, harmonic reduction, and for reduced power fluctuations. The simulations are carried out in the MATLAB/SIMULINK environment and the results are provided for steady state and dynamic conditions. Finally, the performance of SVPWM based vector controlled HVDC Light transmission system is compared with sinusoidal pulse width modulation (SPWM) based HVDC Light system in terms of output voltage and total harmonic distortion (THD).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平衡故障条件下基于SVPWM的矢量控制高压直流输电系统性能研究
近年来,电力电子技术的发展促进了基于绝缘栅双极晶体管(IGBT)的电压源变换器高压直流输电系统的改进。这些也被商业上称为HVDC光传输系统,在可再生能源、微电网和电力系统中很受欢迎。在不同的脉宽调制(PWM)方案中,空间矢量PWM (SVPWM)控制方案由于其更好的直流总线利用率而在高压直流照明应用中越来越受到重视。本文采用SVPWM方案对HVDC Light系统进行控制,以达到更好的直流母线利用率,降低谐波,减小功率波动的目的。在MATLAB/SIMULINK环境下进行了仿真,给出了稳态和动态条件下的仿真结果。最后,比较了基于SVPWM的矢量控制高压直流输电系统与基于正弦脉宽调制(SPWM)的高压直流输电系统在输出电压和总谐波失真(THD)方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applications of Gallium Nitride in power electronics Performance of SVPWM based vector controlled HVDC light transmission system under balanced fault condition Adaptive perturb & observe MPPT algorithm for photovoltaic system Enhanced measurement-based dynamic equivalence using coherency identification Current ripple cancellation for asymmetric multiphase interleaved dc-dc switching converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1