Enhanced measurement-based dynamic equivalence using coherency identification

Soobae Kim, T. Overbye
{"title":"Enhanced measurement-based dynamic equivalence using coherency identification","authors":"Soobae Kim, T. Overbye","doi":"10.1109/PECI.2013.6506058","DOIUrl":null,"url":null,"abstract":"Power system dynamic simulation demands substantial computation due to extensive interconnection among power systems. Traditionally, the computational burden has been reduced by using dynamic equivalent methodologies, such as modal, coherency and measurement-based. Measurement-based method replaces an external system with a simple equivalent and estimates its parameters through optimization method with measurement. However, the conventional method does not clearly present the model structure for the external equivalent. This ambiguity, then, may lead to poor performance of the equivalent. The proposed method uses generator equivalent model and shows how to choose a proper number of generators for the equivalent model structure using coherency concept. The approach preserves relevant modes from the external and thus enhances the simulation performance of the dynamic equivalent. Test results of a simple power system are presented and show a high level of accuracy of the proposed method.","PeriodicalId":113021,"journal":{"name":"2013 IEEE Power and Energy Conference at Illinois (PECI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2013.6506058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Power system dynamic simulation demands substantial computation due to extensive interconnection among power systems. Traditionally, the computational burden has been reduced by using dynamic equivalent methodologies, such as modal, coherency and measurement-based. Measurement-based method replaces an external system with a simple equivalent and estimates its parameters through optimization method with measurement. However, the conventional method does not clearly present the model structure for the external equivalent. This ambiguity, then, may lead to poor performance of the equivalent. The proposed method uses generator equivalent model and shows how to choose a proper number of generators for the equivalent model structure using coherency concept. The approach preserves relevant modes from the external and thus enhances the simulation performance of the dynamic equivalent. Test results of a simple power system are presented and show a high level of accuracy of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用相干识别增强基于测量的动态等效
由于电力系统之间的广泛互联,电力系统动态仿真需要大量的计算量。传统上,通过使用动态等效方法,如模态、相干性和基于测量的方法来减少计算量。基于测量的方法是用简单的等效物代替外部系统,并通过测量优化方法估计其参数。然而,传统的方法并没有清晰地给出外部等效的模型结构。因此,这种模糊性可能导致等效的性能较差。该方法采用发电机等效模型,并介绍了如何利用相干概念为等效模型结构选择适当数量的发电机。该方法保持了相关模态不受外界干扰,从而提高了动态等效体的仿真性能。给出了一个简单电力系统的测试结果,结果表明该方法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applications of Gallium Nitride in power electronics Performance of SVPWM based vector controlled HVDC light transmission system under balanced fault condition Adaptive perturb & observe MPPT algorithm for photovoltaic system Enhanced measurement-based dynamic equivalence using coherency identification Current ripple cancellation for asymmetric multiphase interleaved dc-dc switching converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1