Kalman filters comparison for vehicle localization data alignment

B. Mourllion, D. Gruyer, A. Lambert, S. Glaser
{"title":"Kalman filters comparison for vehicle localization data alignment","authors":"B. Mourllion, D. Gruyer, A. Lambert, S. Glaser","doi":"10.1109/ICAR.2005.1507410","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to carry out a comparison between several algorithms of the Kalman filters family for nonlinear systems. Alter having presented the most popular of them and showed its limitations, we introduce some new Kalman filters and compare them for the vehicle localization problem. This comparison is based on the predictive step what corresponds to the worst case that it can occur in vehicle localization. Typically, when we achieve a vehicle tracking, if the tracked vehicle is hidden, corrective data are unavailable and therefore the corrective step is disable (time data alignment)","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The aim of this paper is to carry out a comparison between several algorithms of the Kalman filters family for nonlinear systems. Alter having presented the most popular of them and showed its limitations, we introduce some new Kalman filters and compare them for the vehicle localization problem. This comparison is based on the predictive step what corresponds to the worst case that it can occur in vehicle localization. Typically, when we achieve a vehicle tracking, if the tracked vehicle is hidden, corrective data are unavailable and therefore the corrective step is disable (time data alignment)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡尔曼滤波比较车辆定位数据对齐
本文的目的是对几种用于非线性系统的卡尔曼滤波算法进行比较。在介绍了目前最流行的几种卡尔曼滤波器及其局限性的基础上,介绍了几种新的卡尔曼滤波器,并对它们在车辆定位问题上的应用进行了比较。这种比较是基于与车辆定位中可能发生的最坏情况相对应的预测步骤。通常,当我们实现车辆跟踪时,如果被跟踪的车辆是隐藏的,则校正数据不可用,因此校正步骤被禁用(时间数据对齐)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manipulator robotics in use for decommissioning of A-1 nuclear power plant An approach to modelling collaborative teleoperation Intestinal locomotion by means of mucoadhesive films Kalman filters comparison for vehicle localization data alignment An omnidirectional vehicle on a basketball
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1