Comparative study on light-induced negative-bias stress stabilities in amorphous In-Ga-Zn-O thin film transistors with photoinduced transient spectroscopy
Kazushi Hayashi, Mototaka Ochi, A. Hino, Hiroaki Tao, H. Goto, T. Kugimiya
{"title":"Comparative study on light-induced negative-bias stress stabilities in amorphous In-Ga-Zn-O thin film transistors with photoinduced transient spectroscopy","authors":"Kazushi Hayashi, Mototaka Ochi, A. Hino, Hiroaki Tao, H. Goto, T. Kugimiya","doi":"10.1109/AM-FPD.2016.7543697","DOIUrl":null,"url":null,"abstract":"A comparative study on light-induced negative-bias stress stabilities in amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) was performed by means of photoinduced transient spectroscopy (PITS). When the a-IGZO thin films were deposited with 4% O2 partial pressure (P/P), a dominant peak with a maximum of around 100 K was clearly observed from the sample. There was a flow rate of SiH4/N2O of 4/100 sccm for the ESL deposition, while the PITS spectra from the sample with a flow rate of SiH4/N2O of 6/150 sccm possessed a broader peak of around 115 K and an apparent shoulder of around 200-280 K was observed. This shoulder of around the 200-280 K was clarified when the a-IGZO thin film was deposited with an O2 P/P of 20 % In accordance with the changes in the electronic structures in the a-IGZO thin films due to the ESL deposition, the stability of the TFTs against the negative bias thermal Illumination stress (NBTIS) was degraded; the value of the Vth shift after the 2h-NBTIS test was increased from 2.5 to 6.0 V The decreasing the compensating acceptors and/or the increasing the hydrogen-related donors could be the origin of the negative Vth shift during the NBTIS test.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A comparative study on light-induced negative-bias stress stabilities in amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) was performed by means of photoinduced transient spectroscopy (PITS). When the a-IGZO thin films were deposited with 4% O2 partial pressure (P/P), a dominant peak with a maximum of around 100 K was clearly observed from the sample. There was a flow rate of SiH4/N2O of 4/100 sccm for the ESL deposition, while the PITS spectra from the sample with a flow rate of SiH4/N2O of 6/150 sccm possessed a broader peak of around 115 K and an apparent shoulder of around 200-280 K was observed. This shoulder of around the 200-280 K was clarified when the a-IGZO thin film was deposited with an O2 P/P of 20 % In accordance with the changes in the electronic structures in the a-IGZO thin films due to the ESL deposition, the stability of the TFTs against the negative bias thermal Illumination stress (NBTIS) was degraded; the value of the Vth shift after the 2h-NBTIS test was increased from 2.5 to 6.0 V The decreasing the compensating acceptors and/or the increasing the hydrogen-related donors could be the origin of the negative Vth shift during the NBTIS test.