Sparse Coding with Outliers

Xiangguang Dai, Keke Zhang, Wei Zhang, Jiang Xiong, Yuming Feng
{"title":"Sparse Coding with Outliers","authors":"Xiangguang Dai, Keke Zhang, Wei Zhang, Jiang Xiong, Yuming Feng","doi":"10.1109/ICICIP47338.2019.9012102","DOIUrl":null,"url":null,"abstract":"Sparse coding is invalid to learn parts-based representations when data is corrupted by outliers. In this paper, matrix completion is considered into sparse coding to handle outliers and a novel sparse coding method is proposed to learn a robust subspace. Experiments on the ORL dataset with salt and pepper noise and contiguous occlusion demonstrate that our proposed sparse method is more effective and robust in achieving a robust subspace.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse coding is invalid to learn parts-based representations when data is corrupted by outliers. In this paper, matrix completion is considered into sparse coding to handle outliers and a novel sparse coding method is proposed to learn a robust subspace. Experiments on the ORL dataset with salt and pepper noise and contiguous occlusion demonstrate that our proposed sparse method is more effective and robust in achieving a robust subspace.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有离群值的稀疏编码
当数据被异常值破坏时,稀疏编码无法学习基于部件的表示。本文将矩阵补全方法引入稀疏编码处理离群点,提出了一种新的稀疏编码方法来学习鲁棒子空间。在具有盐和胡椒噪声和连续遮挡的ORL数据集上的实验表明,本文提出的稀疏方法在实现鲁棒子空间方面更加有效和鲁棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Robot Autonomous Exploration and Navigation in Large-scale Indoor Environments Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification Sparse Coding with Outliers A Novel Fuzzy Logic Control on the FVVT Lift of Internal Combustion Engine Adaptive Fuzzy Compensation Control of MIMO Stochastic Nonlinear Systems with Input Hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1