Methodology for more accurate assessment of heat loss in microchannel flow boiling

Mrinal Jagirdar, P. Lee
{"title":"Methodology for more accurate assessment of heat loss in microchannel flow boiling","authors":"Mrinal Jagirdar, P. Lee","doi":"10.1109/EPTC.2014.7028405","DOIUrl":null,"url":null,"abstract":"Flow boiling in micro-channels is a technology that can potentially be employed for cooling of next generation electronics. High heat transfer coefficient, better temperature uniformity and small pumping power requirement compared to single phase flow are the main advantages of this technology. Advancement in this field is checked by divergence in trends across various groups which warrents more reliable methods to acquire and post-process experimental data. Heat loss estimation methodology and evaluation of the heat transfer coefficient and exit vapour quality can be further refined to realize reliable data-sets. This article proposes the need to adopt two different methods to account for heat loss, one for the calculation of the heat transfer coefficient, wall temperature and wall heat flux while the other for calculation of exit vapour quality during flow boiling. Experimental results bolstering the proposed need are also presented. Two test-sections each having a single finless microchannel of length 25400 μm and width and height of 2540 μm × 420 μm as well as 2540 μm × 150 μm were used. The difference between the heat loss estimated by the two methods is quite substantial hence justifying the endeavour for better heat loss estimation methodology.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Flow boiling in micro-channels is a technology that can potentially be employed for cooling of next generation electronics. High heat transfer coefficient, better temperature uniformity and small pumping power requirement compared to single phase flow are the main advantages of this technology. Advancement in this field is checked by divergence in trends across various groups which warrents more reliable methods to acquire and post-process experimental data. Heat loss estimation methodology and evaluation of the heat transfer coefficient and exit vapour quality can be further refined to realize reliable data-sets. This article proposes the need to adopt two different methods to account for heat loss, one for the calculation of the heat transfer coefficient, wall temperature and wall heat flux while the other for calculation of exit vapour quality during flow boiling. Experimental results bolstering the proposed need are also presented. Two test-sections each having a single finless microchannel of length 25400 μm and width and height of 2540 μm × 420 μm as well as 2540 μm × 150 μm were used. The difference between the heat loss estimated by the two methods is quite substantial hence justifying the endeavour for better heat loss estimation methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
更准确地评估微通道流动沸腾热损失的方法
微通道内的流动沸腾是一种有潜力用于下一代电子设备冷却的技术。与单相流相比,传热系数高、温度均匀性好、泵送功率要求小是该技术的主要优点。这一领域的进展受到不同群体趋势差异的制约,这需要更可靠的方法来获取和后处理实验数据。热损失估算方法以及传热系数和出口蒸汽质量的评估可以进一步改进,以实现可靠的数据集。本文提出需要采用两种不同的方法来计算热损失,一种是计算传热系数、壁面温度和壁面热流密度,另一种是计算流动沸腾时的出口蒸汽质量。实验结果支持了所提出的需求。采用长度为25400 μm、宽度和高度分别为2540 μm × 420 μm和2540 μm × 150 μm的无鳍微通道试件。由两种方法估计的热损失之间的差异是相当可观的,因此证明了更好的热损失估计方法的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the height of Carbon Nanotubes on hot switching of Au/Cr-Au/MWCNT contact pairs Laminating thin glass onto glass carrier to eliminate grinding and bonding process for glass interposer A robust chip capacitor for video band width in RF power amplifiers Chip scale package with low cost substrate evaluation and characterization Methodology for more accurate assessment of heat loss in microchannel flow boiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1