A new reinforcement learning based automatic generation controller for hydro-thermal power systems

T. Ahamed, P. S. Sastry, P. Rao
{"title":"A new reinforcement learning based automatic generation controller for hydro-thermal power systems","authors":"T. Ahamed, P. S. Sastry, P. Rao","doi":"10.1109/TENCON.2003.1273223","DOIUrl":null,"url":null,"abstract":"Recently, we proposed a reinforcement learning (RL) based approach for designing an automatic generation controller for a two-area power system (Ahamed, T.P.I. et al., Electric Power Systems Research, vol.63, p.9-26, 2002), where we demonstrated the efficacy of the approach on an identical, simple, two-area model. This paper aims to demonstrate an alternative RL-AGC design which is simpler. Its effectiveness is demonstrated by considering a hydro-thermal system whose dynamics are more complicated than the system considered previously.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, we proposed a reinforcement learning (RL) based approach for designing an automatic generation controller for a two-area power system (Ahamed, T.P.I. et al., Electric Power Systems Research, vol.63, p.9-26, 2002), where we demonstrated the efficacy of the approach on an identical, simple, two-area model. This paper aims to demonstrate an alternative RL-AGC design which is simpler. Its effectiveness is demonstrated by considering a hydro-thermal system whose dynamics are more complicated than the system considered previously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于强化学习的火电系统自动发电控制器
最近,我们提出了一种基于强化学习(RL)的方法来设计两区电力系统的自动发电控制器(Ahamed, T.P.I.等人,《电力系统研究》,vol.63, p.9-26, 2002),我们在一个相同的、简单的两区模型上证明了该方法的有效性。本文旨在演示一种更简单的替代RL-AGC设计。通过考虑动力学比先前考虑的系统更复杂的水热系统来证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Script to speech conversion for Marathi language Parameter optimization and rule base selection for fuzzy impulse filters using evolutionary algorithms VHDL based design of an FDWT processor High frequency industrial power supplies using inductor alternators driven by bio-mass gasifier based systems Adaptive estimation of parameters using partial information of desired outputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1