A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration

Hadi Rezaei, S. Azadi, Mina Ghorbani
{"title":"A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration","authors":"Hadi Rezaei, S. Azadi, Mina Ghorbani","doi":"10.1109/ICMV.2009.20","DOIUrl":null,"url":null,"abstract":"Over the course of a neurosurgical procedure, the brain changes its shape in reaction to mechanical and physiological changes associated with the surgery. Hence the use of elastic registration is required. In this paper, we propose a hybrid particle swarm with gradient descent algorithm named as HPSO to solve the problem of Elastic brain Image Registration. The main idea is to find the best transformation function that aligns two images by maximizing a similarity measure through HPSO. There are two major optimization methods, global and local methods. The basic problem with local methods such as steepest gradient is that they usually trap in a local minimum. However, steepest gradient will usually converge even for poor initial approximation. On the other hand, the basic PSO as a global method is sensitive to its initial values. So, we decide to use the steepest gradient as a starting approximation for the PSO method. The results from our experiments show that this hybrid algorithm, besides its simplicity, provides a robust, accurate and effective way for elastic brain image registration.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Over the course of a neurosurgical procedure, the brain changes its shape in reaction to mechanical and physiological changes associated with the surgery. Hence the use of elastic registration is required. In this paper, we propose a hybrid particle swarm with gradient descent algorithm named as HPSO to solve the problem of Elastic brain Image Registration. The main idea is to find the best transformation function that aligns two images by maximizing a similarity measure through HPSO. There are two major optimization methods, global and local methods. The basic problem with local methods such as steepest gradient is that they usually trap in a local minimum. However, steepest gradient will usually converge even for poor initial approximation. On the other hand, the basic PSO as a global method is sensitive to its initial values. So, we decide to use the steepest gradient as a starting approximation for the PSO method. The results from our experiments show that this hybrid algorithm, besides its simplicity, provides a robust, accurate and effective way for elastic brain image registration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性脑图像配准的混合粒子群最陡梯度算法
在神经外科手术过程中,大脑会根据与手术相关的机械和生理变化而改变其形状。因此,需要使用弹性配准。针对弹性脑图像配准问题,提出了一种基于梯度下降的混合粒子群算法(HPSO)。主要思想是通过HPSO最大化相似性度量来找到对齐两幅图像的最佳变换函数。有两种主要的优化方法:全局优化方法和局部优化方法。最陡梯度等局部方法的基本问题是,它们通常会陷入局部最小值。然而,即使初始近似较差,最陡梯度通常也会收敛。另一方面,作为全局方法的基本粒子群算法对其初始值很敏感。因此,我们决定使用最陡梯度作为PSO方法的起始近似。实验结果表明,该混合算法具有简单、鲁棒、准确、有效的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration Early Software Fault Prediction Using Real Time Defect Data Effective Watermarking of Digital Audio and Image Using Matlab Technique A Robust Neural System for Objectionable Image Recognition A Hybrid Scheme for Online Detection and Classification of Textural Fabric Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1