Early Software Fault Prediction Using Real Time Defect Data

A. Kaur, P. Sandhu, Amanpreet Singh Bra
{"title":"Early Software Fault Prediction Using Real Time Defect Data","authors":"A. Kaur, P. Sandhu, Amanpreet Singh Bra","doi":"10.1109/ICMV.2009.54","DOIUrl":null,"url":null,"abstract":"Quality of a software component can be measured in terms of fault proneness of data. Quality estimations are made using fault proneness data available from previously developed similar type of projects and the training data consisting of software measurements. To predict faulty modules in software data different techniques have been proposed which includes statistical method, machine learning methods, neural network techniques and clustering techniques. The aim of proposed approach is to investigate that whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules by using clustering techniques. This approach has been tested with three real time defect datasets of NASA software projects, JM1, PC1 and CM1. Predicting faults early in the software life cycle can be used to improve software process control and achieve high software reliability. The results show that when all the prediction techniques are evaluated, the best prediction model is found to be the fusion of requirement and code metric model.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Quality of a software component can be measured in terms of fault proneness of data. Quality estimations are made using fault proneness data available from previously developed similar type of projects and the training data consisting of software measurements. To predict faulty modules in software data different techniques have been proposed which includes statistical method, machine learning methods, neural network techniques and clustering techniques. The aim of proposed approach is to investigate that whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules by using clustering techniques. This approach has been tested with three real time defect datasets of NASA software projects, JM1, PC1 and CM1. Predicting faults early in the software life cycle can be used to improve software process control and achieve high software reliability. The results show that when all the prediction techniques are evaluated, the best prediction model is found to be the fusion of requirement and code metric model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用实时缺陷数据进行早期软件故障预测
软件组件的质量可以根据数据的错误倾向来衡量。质量估计是使用从以前开发的类似类型的项目中获得的故障倾向数据和由软件测量组成的训练数据进行的。为了预测软件数据中的故障模块,人们提出了不同的技术,包括统计方法、机器学习方法、神经网络技术和聚类技术。提出的方法的目的是研究是否在早期生命周期中可用的度量(例如需求度量),在后期生命周期中可用的度量(例如代码度量),以及在早期生命周期中可用的度量(例如需求度量)与后期生命周期中可用的度量(例如代码度量)相结合,可以通过使用聚类技术来识别容易出错的模块。该方法已在NASA软件项目JM1、PC1和CM1的三个实时缺陷数据集上进行了测试。在软件生命周期的早期进行故障预测,可以提高软件的过程控制能力,提高软件的可靠性。结果表明,在对所有预测技术进行评估后,发现需求模型和代码度量模型的融合是最好的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration Early Software Fault Prediction Using Real Time Defect Data Effective Watermarking of Digital Audio and Image Using Matlab Technique A Robust Neural System for Objectionable Image Recognition A Hybrid Scheme for Online Detection and Classification of Textural Fabric Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1