Handwritten alpha-numeric recognition by a self-growing neural network 'CombNET-II'

A. Iwata, Y. Suwa, Y. Ino, N. Suzumura
{"title":"Handwritten alpha-numeric recognition by a self-growing neural network 'CombNET-II'","authors":"A. Iwata, Y. Suwa, Y. Ino, N. Suzumura","doi":"10.1109/IJCNN.1992.227337","DOIUrl":null,"url":null,"abstract":"CombNET-II is a self-growing four-layer neural network model which has a comb structure. The first layer constitutes a stem network which quantizes an input feature vector space into several subspaces and the following 2-4 layers constitute branch network modules which classify input data in each sub-space into specified categories. CombNET-II uses a self-growing neural network learning procedure, for training the stem network. Back propagation is utilized to train branch networks. Each branch module, which is a three-layer hierarchical network, has a restricted number of output neurons and inter-connections so that it is easy to train. Therefore CombNET-II does not cause the local minimum state since the complexities of the problems to be solved for each branch module are restricted by the stem network. CombNET-II correctly classified 99.0% of previously unseen handwritten alpha-numeric characters.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

CombNET-II is a self-growing four-layer neural network model which has a comb structure. The first layer constitutes a stem network which quantizes an input feature vector space into several subspaces and the following 2-4 layers constitute branch network modules which classify input data in each sub-space into specified categories. CombNET-II uses a self-growing neural network learning procedure, for training the stem network. Back propagation is utilized to train branch networks. Each branch module, which is a three-layer hierarchical network, has a restricted number of output neurons and inter-connections so that it is easy to train. Therefore CombNET-II does not cause the local minimum state since the complexities of the problems to be solved for each branch module are restricted by the stem network. CombNET-II correctly classified 99.0% of previously unseen handwritten alpha-numeric characters.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自生长神经网络CombNET-II的手写字母数字识别
CombNET-II是一种具有梳状结构的自生长四层神经网络模型。第一层构成一个干网络,它将输入特征向量空间量化为几个子空间,接下来的2-4层构成分支网络模块,将每个子空间中的输入数据分类为指定的类别。CombNET-II使用自生长神经网络学习程序,用于训练干网络。利用反向传播来训练分支网络。每个分支模块是一个三层分层网络,其输出神经元数量和相互连接数量有限,便于训练。因此,由于每个分支模块要解决的问题的复杂性受到主干网络的限制,CombNET-II不会导致局部最小状态。CombNET-II正确分类了99.0%以前看不见的手写字母数字字符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1