Dynamic multi-objective optimization algorithm based on weighted differential prediction model

Yumeng Zhao, Xianpeng Wang, Zhiming Dong, Yao Wang, Hangyu Lou, Tenghui Hu, Kai Fu
{"title":"Dynamic multi-objective optimization algorithm based on weighted differential prediction model","authors":"Yumeng Zhao, Xianpeng Wang, Zhiming Dong, Yao Wang, Hangyu Lou, Tenghui Hu, Kai Fu","doi":"10.1109/IAI55780.2022.9976797","DOIUrl":null,"url":null,"abstract":"In this paper, a new algorithm for solving dynamic multi-objective optimization problems(DMOPs) is proposed. Most of the traditional dynamic multi-objective optimization algorithms will make predictions based on the overall average evolutionary direction of the population, which is hardly applicable to problems where the solution set and frontier do not vary with the environmental rules. In this paper, a dynamic multi-objective optimization algorithm based on weight difference prediction model is designed to solve such problems. The algorithm contains a weighted differential prediction strategy, and a differential model is built for each individual using the weights to predict the initial population after environmental changes. With this approach, each individual in the population can be made to respond quickly to environmental changes. We used three classical comparison algorithms to conduct experiments on a series of test problems. The experimental results show that the WD-MOEA/D algorithm can significantly improve the dynamic optimization performance and is effective in solving different types of dynamic problems.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new algorithm for solving dynamic multi-objective optimization problems(DMOPs) is proposed. Most of the traditional dynamic multi-objective optimization algorithms will make predictions based on the overall average evolutionary direction of the population, which is hardly applicable to problems where the solution set and frontier do not vary with the environmental rules. In this paper, a dynamic multi-objective optimization algorithm based on weight difference prediction model is designed to solve such problems. The algorithm contains a weighted differential prediction strategy, and a differential model is built for each individual using the weights to predict the initial population after environmental changes. With this approach, each individual in the population can be made to respond quickly to environmental changes. We used three classical comparison algorithms to conduct experiments on a series of test problems. The experimental results show that the WD-MOEA/D algorithm can significantly improve the dynamic optimization performance and is effective in solving different types of dynamic problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权差分预测模型的动态多目标优化算法
本文提出了一种求解动态多目标优化问题的新算法。传统的动态多目标优化算法大多基于种群整体平均进化方向进行预测,很难适用于解集和边界不随环境规则变化的问题。本文设计了一种基于权差预测模型的动态多目标优化算法来解决这类问题。该算法采用加权差分预测策略,利用权重对个体建立差分模型,预测环境变化后的初始种群。通过这种方法,种群中的每个个体都可以对环境变化做出快速反应。我们使用了三种经典的比较算法对一系列测试问题进行了实验。实验结果表明,WD-MOEA/D算法能显著提高动态优化性能,有效解决不同类型的动态问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Element Component Content Based on Mechanism Analysis and Error Compensation An Improved Genetic Algorithm for Solving Tri-level Programming Problems Dynamic multi-objective optimization algorithm based on weighted differential prediction model Quality defect analysis of injection molding based on gradient enhanced Kriging model Leader-Follower Consensus Control For Multi-Spacecraft With The Attitude Observers On SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1