Shall we play? – Extending the Visual Analytics Design Space through Gameful Design Concepts

R. Sevastjanova, H. Schäfer, J. Bernard, D. Keim, Mennatallah El-Assady
{"title":"Shall we play? – Extending the Visual Analytics Design Space through Gameful Design Concepts","authors":"R. Sevastjanova, H. Schäfer, J. Bernard, D. Keim, Mennatallah El-Assady","doi":"10.1109/MLUI52769.2019.10075563","DOIUrl":null,"url":null,"abstract":"Many interactive machine learning workflows in the context of visual analytics encompass the stages of exploration, verification, and knowledge communication. Within these stages, users perform various types of actions based on different human needs. In this position paper, we postulate expanding this workflow by introducing gameful design elements. These can increase a user’s motivation to take actions, to improve a model’s quality, or to exchange insights with others. By combining concepts from visual analytics, human psychology, and gamification, we derive a model for augmenting the visual analytics processes with game mechanics. We argue for automatically learning a parametrization of these game mechanics based on a continuous evaluation of the users’ actions and analysis results. To demonstrate our proposed conceptual model, we illustrate how three existing visual analytics techniques could benefit from incorporating tailored game dynamics. Lastly, we discuss open challenges and point out potential implications for future research.","PeriodicalId":297242,"journal":{"name":"2019 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLUI52769.2019.10075563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many interactive machine learning workflows in the context of visual analytics encompass the stages of exploration, verification, and knowledge communication. Within these stages, users perform various types of actions based on different human needs. In this position paper, we postulate expanding this workflow by introducing gameful design elements. These can increase a user’s motivation to take actions, to improve a model’s quality, or to exchange insights with others. By combining concepts from visual analytics, human psychology, and gamification, we derive a model for augmenting the visual analytics processes with game mechanics. We argue for automatically learning a parametrization of these game mechanics based on a continuous evaluation of the users’ actions and analysis results. To demonstrate our proposed conceptual model, we illustrate how three existing visual analytics techniques could benefit from incorporating tailored game dynamics. Lastly, we discuss open challenges and point out potential implications for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们一起玩好吗?-通过游戏化设计理念扩展视觉分析设计空间
在可视化分析的背景下,许多交互式机器学习工作流程包括探索、验证和知识交流阶段。在这些阶段中,用户根据不同的需求执行各种类型的操作。在本文中,我们假设通过引入游戏设计元素来扩展这一工作流程。这些可以增加用户采取行动、改进模型质量或与其他人交换见解的动机。通过结合视觉分析、人类心理学和游戏化的概念,我们得出了一个用游戏机制来增强视觉分析过程的模型。我们主张基于对用户行为和分析结果的持续评估,自动学习这些游戏机制的参数化。为了证明我们提出的概念模型,我们说明了三种现有的视觉分析技术如何从结合定制的游戏动态中受益。最后,我们讨论了开放的挑战,并指出了未来研究的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shall we play? – Extending the Visual Analytics Design Space through Gameful Design Concepts “All Right, Mr. DeMille, I’m Ready for My Closeup:” Adding Meaning to User Actions from Video for Immersive Analytics Machine Learning from User Interaction for Visualization and Analytics: A Workshop-Generated Research Agenda Using Machine Learning and Visualization for Qualitative Inductive Analyses of Big Data DeepVA: Bridging Cognition and Computation through Semantic Interaction and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1