Advanced Convolutional Neural Network With Feedforward Inhibition

Lu Liu, Shuling Yang, D. Shi
{"title":"Advanced Convolutional Neural Network With Feedforward Inhibition","authors":"Lu Liu, Shuling Yang, D. Shi","doi":"10.1109/ICMLC48188.2019.8949229","DOIUrl":null,"url":null,"abstract":"Convolutional neural network is a multi-layer neural network with robust pattern recognition ability. However, when the activation function is sigmoid, the convolutional neural network produces gradient vanishing problem. First, this paper analyzes the gradient vanishing problem, and then based on the balance of excitation and inhibition mechanism in neurology, it is proposed to use feed-forward inhibition to reduce activition value and wipe off the scale effect of weights, so that the model can accelerate convergence under the premise of maintaining the nonlinear fitting ability. The results show that the improved convolutional neural network can effectively relieve the gradient vanishing problem.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural network is a multi-layer neural network with robust pattern recognition ability. However, when the activation function is sigmoid, the convolutional neural network produces gradient vanishing problem. First, this paper analyzes the gradient vanishing problem, and then based on the balance of excitation and inhibition mechanism in neurology, it is proposed to use feed-forward inhibition to reduce activition value and wipe off the scale effect of weights, so that the model can accelerate convergence under the premise of maintaining the nonlinear fitting ability. The results show that the improved convolutional neural network can effectively relieve the gradient vanishing problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有前馈抑制的高级卷积神经网络
卷积神经网络是一种具有鲁棒模式识别能力的多层神经网络。然而,当激活函数为s型时,卷积神经网络会产生梯度消失问题。本文首先分析了梯度消失问题,然后基于神经学中激励与抑制机制的平衡,提出利用前馈抑制降低激活值,消除权值的尺度效应,使模型在保持非线性拟合能力的前提下加速收敛。结果表明,改进的卷积神经网络可以有效地缓解梯度消失问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Empirical Study on the Classification of Chinese News Articles by Machine Learning and Deep Learning Techniques Posture Estimation Method Using Cushion Type Seat Pressure Sensor Advanced Convolutional Neural Network With Feedforward Inhibition Utilization of the Infrared Image Capturing Combustion State for Estimating the Steam Flow Aming to Stabilize Garbage Power Generation Domain Adaption for Facial Expression Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1