Evaluation of Parametric Statistical Models for Wind Speed Probability Density Estimation

Maisam Wahbah, Omar Alhussein, T. El-Fouly, B. Zahawi, S. Muhaidat
{"title":"Evaluation of Parametric Statistical Models for Wind Speed Probability Density Estimation","authors":"Maisam Wahbah, Omar Alhussein, T. El-Fouly, B. Zahawi, S. Muhaidat","doi":"10.1109/EPEC.2018.8598283","DOIUrl":null,"url":null,"abstract":"An accurate statistical estimation of wind speed probability density at a given site is crucial when making power network planning decisions involving wind generation resources. The use of parametric probability density functions, such as the Rayleigh, Weibull and Gaussian distributions, can be problematic as it can lead to model mis-specification at a given site. In this paper, the use of the Gaussian Mixture Model (GMM) to estimate wind speed variability is investigated and compared with the above three popular parametric models using wind speed data for six sites in northwest Europe. Results show that the GMM produces the lowest error values with the highest percentage improvements, and is the only model that consistently fails to reject the null hypothesis when conducting the K-S goodness-of-fit test.","PeriodicalId":265297,"journal":{"name":"2018 IEEE Electrical Power and Energy Conference (EPEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2018.8598283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An accurate statistical estimation of wind speed probability density at a given site is crucial when making power network planning decisions involving wind generation resources. The use of parametric probability density functions, such as the Rayleigh, Weibull and Gaussian distributions, can be problematic as it can lead to model mis-specification at a given site. In this paper, the use of the Gaussian Mixture Model (GMM) to estimate wind speed variability is investigated and compared with the above three popular parametric models using wind speed data for six sites in northwest Europe. Results show that the GMM produces the lowest error values with the highest percentage improvements, and is the only model that consistently fails to reject the null hypothesis when conducting the K-S goodness-of-fit test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风速概率密度估算参数统计模型的评价
在制定涉及风力发电资源的电网规划决策时,对给定地点风速概率密度的准确统计估计是至关重要的。参数概率密度函数(如瑞利分布、威布尔分布和高斯分布)的使用可能存在问题,因为它可能导致给定地点的模型规格错误。本文利用欧洲西北部6个站点的风速数据,研究了高斯混合模型(GMM)对风速变率的估计,并与上述3种流行的参数模型进行了比较。结果表明,GMM产生的误差值最低,改进百分比最高,并且是唯一在进行K-S拟合优度检验时始终未能拒绝原假设的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Power Mismatch Elimination Strategy for an MMC-based PV System in Unbalanced Grids Implementation and Testing of a Hybrid Protection Scheme for Active Distribution Network Evaluation of Parametric Statistical Models for Wind Speed Probability Density Estimation Modeling of Ferroresonance Phenomena in MV Networks Emulating Subsynchronous Resonance using Hardware and Software Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1