{"title":"Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF","authors":"E. Karatzas, A. Delis, G. Kolios, G. Spyrou","doi":"10.1109/BIBE.2019.00022","DOIUrl":null,"url":null,"abstract":"Fibrotic diseases constitute incurable maladies that affect a large portion of the population. Idiopathic Pulmonary Fibrosis is one of the most common, and thus studied, fibrotic diseases. Common ground among all fibrotic diseases is the uncontrollable fibrogenesis which is responsible for accumulated damage in the susceptible tissues. The plethora and complexity of the underlying mechanisms of fibrotic diseases account for the lack of regimens. Hence it is highly likely that a combination of drugs is required in order to counter every perturbation. In this study, we seek to identify common biological mechanisms and characteristics of fibrotic diseases, based on information acquired from biological databases, while we focus on Idiopathic Pulmonary Fibrosis. We also try to predict links between molecular data and their respective fibrotic phenotypes. We finally construct phenotypic and molecular networks, visualize them and apply a clustering algorithm on each network to identify fibrotic diseases that are close to Idiopathic Pulmonary Fibrosis.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fibrotic diseases constitute incurable maladies that affect a large portion of the population. Idiopathic Pulmonary Fibrosis is one of the most common, and thus studied, fibrotic diseases. Common ground among all fibrotic diseases is the uncontrollable fibrogenesis which is responsible for accumulated damage in the susceptible tissues. The plethora and complexity of the underlying mechanisms of fibrotic diseases account for the lack of regimens. Hence it is highly likely that a combination of drugs is required in order to counter every perturbation. In this study, we seek to identify common biological mechanisms and characteristics of fibrotic diseases, based on information acquired from biological databases, while we focus on Idiopathic Pulmonary Fibrosis. We also try to predict links between molecular data and their respective fibrotic phenotypes. We finally construct phenotypic and molecular networks, visualize them and apply a clustering algorithm on each network to identify fibrotic diseases that are close to Idiopathic Pulmonary Fibrosis.