A Study of Using GPT-3 to Generate a Thai Sentiment Analysis of COVID-19 Tweets Dataset

Patthamanan Isaranontakul, W. Kreesuradej
{"title":"A Study of Using GPT-3 to Generate a Thai Sentiment Analysis of COVID-19 Tweets Dataset","authors":"Patthamanan Isaranontakul, W. Kreesuradej","doi":"10.1109/JCSSE58229.2023.10201994","DOIUrl":null,"url":null,"abstract":"This study evaluated the effectiveness of using synthetic text datasets generated by GPT-3 for sentiment analysis with deep learning models, namely Bi-GRU and Bi-LSTM. The study compares the performance of these models on both synthetic text and Label Tweet datasets using GPT-3 and reveals that deep learning model performance is dependent on the dataset's nature. The results indicate that using synthetic text generated by GPT-3 significantly enhances the accuracy of both models, with Bi-LSTM achieving an accuracy of 0.84 and Bi-GRU achieving an accuracy of 0.85. The study underscores the importance of meticulous dataset selection and preparation for developing precise and effective deep learning models for various sequential data types. The findings demonstrate that synthetic text datasets generated by GPT-3 can serve as a valuable resource for developing deep learning models as they are labeled and save researchers time and effort in manual labeling of large datasets.","PeriodicalId":298838,"journal":{"name":"2023 20th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE58229.2023.10201994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the effectiveness of using synthetic text datasets generated by GPT-3 for sentiment analysis with deep learning models, namely Bi-GRU and Bi-LSTM. The study compares the performance of these models on both synthetic text and Label Tweet datasets using GPT-3 and reveals that deep learning model performance is dependent on the dataset's nature. The results indicate that using synthetic text generated by GPT-3 significantly enhances the accuracy of both models, with Bi-LSTM achieving an accuracy of 0.84 and Bi-GRU achieving an accuracy of 0.85. The study underscores the importance of meticulous dataset selection and preparation for developing precise and effective deep learning models for various sequential data types. The findings demonstrate that synthetic text datasets generated by GPT-3 can serve as a valuable resource for developing deep learning models as they are labeled and save researchers time and effort in manual labeling of large datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用GPT-3生成COVID-19推文数据集的泰国情绪分析研究
本研究评估了使用GPT-3生成的合成文本数据集与深度学习模型(Bi-GRU和Bi-LSTM)进行情感分析的有效性。该研究使用GPT-3比较了这些模型在合成文本和标签Tweet数据集上的性能,并揭示了深度学习模型的性能取决于数据集的性质。结果表明,使用GPT-3生成的合成文本显著提高了两种模型的准确率,Bi-LSTM的准确率为0.84,Bi-GRU的准确率为0.85。该研究强调了细致的数据集选择和准备对于为各种顺序数据类型开发精确有效的深度学习模型的重要性。研究结果表明,GPT-3生成的合成文本数据集可以作为开发深度学习模型的宝贵资源,因为它们被标记,并且节省了研究人员手动标记大型数据集的时间和精力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seagrass Classification Using Differentiable Architecture Search Contextualized vs. Static Word Embeddings for Word-based Analysis of Opposing Opinions A Comparative Study of LSTM, GRU, BiLSTM and BiGRU to Predict Dissolved Oxygen SmartPoultry: Early Detection of Poultry Disease from Smartphone Captured Fecal Image A Study of Using GPT-3 to Generate a Thai Sentiment Analysis of COVID-19 Tweets Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1