H. E. Manoochehri, Susmitha Sri Kadiyala, M. Nourani
{"title":"Predicting Drug-Target Interactions Using Weisfeiler-Lehman Neural Network","authors":"H. E. Manoochehri, Susmitha Sri Kadiyala, M. Nourani","doi":"10.1109/BHI.2019.8834572","DOIUrl":null,"url":null,"abstract":"Predicting missing drug-target relationships can help to speed up the process of identifying unknown interactions between chemical drugs and target proteins in pharmaceutical research. In this paper we employ Weisfeiler-Lehman Neural Network method to capture features, purely based on topological network and learn the pattern of drug-target interactions. We show our approach is able to learn sophisticated drug-target topological features and outperform other similarity based methods in terms of AUROC.","PeriodicalId":281971,"journal":{"name":"2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2019.8834572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Predicting missing drug-target relationships can help to speed up the process of identifying unknown interactions between chemical drugs and target proteins in pharmaceutical research. In this paper we employ Weisfeiler-Lehman Neural Network method to capture features, purely based on topological network and learn the pattern of drug-target interactions. We show our approach is able to learn sophisticated drug-target topological features and outperform other similarity based methods in terms of AUROC.