{"title":"PENENTUAN MODEL TERBAIK PADA REGRESI SPLINE MENGGUNAKAN GENERALIZED CROSS VALIDATION (GCV)","authors":"Susnawati, Dadan Kusnandar, Yundari","doi":"10.26418/bbimst.v8i4.35872","DOIUrl":null,"url":null,"abstract":"Regresi nonparametrik merupakan suatu metode statistika yang digunakan untuk mengetahui hubungan antara variabel respon dengan variabel prediktor jika tidak diketahui bentuk kurva regresinya atau tidak terdapat informasi yang lengkap tentang bentuk pola datanya. Pada penelitian ini, digunakan regresi nonparametrik Spline yang bersifat fleksibel dalam mengatasi pola data yang mengalami kenaikan atau penurunan data dengan bantuan titik knot. Diperlukan beberapa langkah dalam menentukan model regresi Spline terbaik yaitu membuat statistik deskriptif dan matriks plot. Penentuan nilai GCV untuk masing-masing Spline linier, kuadratik, dan kubik dengan satu titik knot. Kemudian dilakukan pengujian asumsi residual. Setelah diperoleh nilai GCV yang paling minimum dan memenuhi asumsi residual, selanjutnya memodelkan persentase penduduk miskin dengan angka melek huruf menggunakan regresi Spline. Studi kasus yang digunakan ialah data persentase penduduk miskin sebagai variabel respon dan angka melek huruf sebagai variabel prediktor. Hasil analisis menunjukkan model regresi nonparametrik Spline linier dengan satu titik knot yang memiliki nilai GCV yang paling minimum. Nilai GCV yang diperoleh adalah sebesar dengan titik knotnya adalah Kata Kunci: Regresi Nonparametrik Spline, GCV, Titik Knot.","PeriodicalId":265420,"journal":{"name":"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/bbimst.v8i4.35872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Regresi nonparametrik merupakan suatu metode statistika yang digunakan untuk mengetahui hubungan antara variabel respon dengan variabel prediktor jika tidak diketahui bentuk kurva regresinya atau tidak terdapat informasi yang lengkap tentang bentuk pola datanya. Pada penelitian ini, digunakan regresi nonparametrik Spline yang bersifat fleksibel dalam mengatasi pola data yang mengalami kenaikan atau penurunan data dengan bantuan titik knot. Diperlukan beberapa langkah dalam menentukan model regresi Spline terbaik yaitu membuat statistik deskriptif dan matriks plot. Penentuan nilai GCV untuk masing-masing Spline linier, kuadratik, dan kubik dengan satu titik knot. Kemudian dilakukan pengujian asumsi residual. Setelah diperoleh nilai GCV yang paling minimum dan memenuhi asumsi residual, selanjutnya memodelkan persentase penduduk miskin dengan angka melek huruf menggunakan regresi Spline. Studi kasus yang digunakan ialah data persentase penduduk miskin sebagai variabel respon dan angka melek huruf sebagai variabel prediktor. Hasil analisis menunjukkan model regresi nonparametrik Spline linier dengan satu titik knot yang memiliki nilai GCV yang paling minimum. Nilai GCV yang diperoleh adalah sebesar dengan titik knotnya adalah Kata Kunci: Regresi Nonparametrik Spline, GCV, Titik Knot.