Distributed Data Clustering in the Context of the Internet of Things: A Data Traffic Reduction Approach

R. Brandão, R. Goldschmidt
{"title":"Distributed Data Clustering in the Context of the Internet of Things: A Data Traffic Reduction Approach","authors":"R. Brandão, R. Goldschmidt","doi":"10.1145/3126858.3131579","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) emerged with the objective to integrate physical objects into classical computer networks. These objects usually generate larges amount of data, transferring the bottleneck of data processing from sensors to communication systems. For example, analyzing IoT data often demands data centralization before running a mining algorithm. Thus, in order to reduce the data transference commonly required by the data clustering task, this paper proposes a grid-based data summarization approach. The proposed approach uses a single uniform grid to partition the space into cells and to summarize data before centralization. Summarization ensures the reduction of the amounts of data transferred. This approach also includes a data clustering algorithm that deals with the summarized and centralized data. Our preliminary experiments revealed good results in terms of data compression and quality of clustering with a two-dimensional benchmark dataset.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3131579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Internet of Things (IoT) emerged with the objective to integrate physical objects into classical computer networks. These objects usually generate larges amount of data, transferring the bottleneck of data processing from sensors to communication systems. For example, analyzing IoT data often demands data centralization before running a mining algorithm. Thus, in order to reduce the data transference commonly required by the data clustering task, this paper proposes a grid-based data summarization approach. The proposed approach uses a single uniform grid to partition the space into cells and to summarize data before centralization. Summarization ensures the reduction of the amounts of data transferred. This approach also includes a data clustering algorithm that deals with the summarized and centralized data. Our preliminary experiments revealed good results in terms of data compression and quality of clustering with a two-dimensional benchmark dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网环境下的分布式数据聚类:一种减少数据流量的方法
物联网(IoT)的目标是将物理对象集成到经典计算机网络中。这些对象通常会产生大量数据,将数据处理的瓶颈从传感器转移到通信系统。例如,分析物联网数据通常需要在运行挖掘算法之前进行数据集中。因此,为了减少数据聚类任务通常需要的数据传输,本文提出了一种基于网格的数据汇总方法。该方法使用一个统一的网格将空间划分为单元,并在集中之前对数据进行汇总。摘要确保减少传输的数据量。该方法还包括处理汇总和集中数据的数据聚类算法。我们的初步实验表明,在二维基准数据集的数据压缩和聚类质量方面取得了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STorM: A Hypermedia Authoring Model for Interactive Digital Out-of-Home Media Distributed Data Clustering in the Context of the Internet of Things: A Data Traffic Reduction Approach AnyLanguage-To-LIBRAS: Evaluation of an Machine Translation Service of Any Oralized Language for the Brazilian Sign Language Adaptive Sensing Relevance Exploiting Social Media Mining in Smart Cities Automatic Text Recognition in Web Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1