Lossless Reduced Cutset Coding of Markov Random Fields

M. Reyes, D. Neuhoff
{"title":"Lossless Reduced Cutset Coding of Markov Random Fields","authors":"M. Reyes, D. Neuhoff","doi":"10.1109/DCC.2010.41","DOIUrl":null,"url":null,"abstract":"This paper presents Reduced Cutset Coding, a new Arithmetic Coding (AC) based approach tolossless compression of Markov random fields. In recent work\\cite{reye:09a}, the authors presented an efficient AC based approachto encoding acyclic MRFs and described a Local Conditioning (LC)based approach to encoding cyclic MRFs. In the present work, weintroduce an algorithm for AC encoding of a cyclic MRF for which thecomplexity of the LC method of \\cite{reye:09a}, or the acyclicMRF algorithm of \\cite{reye:09a} combined with the Junction Tree(JT) algorithm, is too large. For encoding an MRF based on acyclic graph $G=(V,E)$, a cutset $U\\subset V$ is selected such thatthe subgraph $G_U$ induced by $U$, and each of the components of$G\\setminus U$, are tractable to either LC or JT. Then, the cutsetvariables $X_U$ are AC encoded with coding distributions based on areduced MRF defined on $G_U$, and the remaining components$X_{V\\setminus U}$ of $X_V$ are optimally AC encoded conditioned on$X_U$. The increase in rate over optimal encoding of $X_V$ is thenormalized divergence between the marginal distribution of $X_U$ and thereduced MRF on $G_U$ used for the AC encoding. We show this follows aPythagorean decomposition and, additionally, that the optimalexponential parameter for the reduced MRF on $G_U$ is the one thatpreserves the moments from the marginal distribution. We also showthat the rate of encoding $X_U$ with this moment-matchingexponential parameter is equal to the entropy of the reduced MRFwith this moment-matching parameter. We illustrate the concepts ofour approach by encoding a typical image from an Ising model with acutset consisting of evenly spaced rows. The performance on this image issimilar to that of JBIG.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents Reduced Cutset Coding, a new Arithmetic Coding (AC) based approach tolossless compression of Markov random fields. In recent work\cite{reye:09a}, the authors presented an efficient AC based approachto encoding acyclic MRFs and described a Local Conditioning (LC)based approach to encoding cyclic MRFs. In the present work, weintroduce an algorithm for AC encoding of a cyclic MRF for which thecomplexity of the LC method of \cite{reye:09a}, or the acyclicMRF algorithm of \cite{reye:09a} combined with the Junction Tree(JT) algorithm, is too large. For encoding an MRF based on acyclic graph $G=(V,E)$, a cutset $U\subset V$ is selected such thatthe subgraph $G_U$ induced by $U$, and each of the components of$G\setminus U$, are tractable to either LC or JT. Then, the cutsetvariables $X_U$ are AC encoded with coding distributions based on areduced MRF defined on $G_U$, and the remaining components$X_{V\setminus U}$ of $X_V$ are optimally AC encoded conditioned on$X_U$. The increase in rate over optimal encoding of $X_V$ is thenormalized divergence between the marginal distribution of $X_U$ and thereduced MRF on $G_U$ used for the AC encoding. We show this follows aPythagorean decomposition and, additionally, that the optimalexponential parameter for the reduced MRF on $G_U$ is the one thatpreserves the moments from the marginal distribution. We also showthat the rate of encoding $X_U$ with this moment-matchingexponential parameter is equal to the entropy of the reduced MRFwith this moment-matching parameter. We illustrate the concepts ofour approach by encoding a typical image from an Ising model with acutset consisting of evenly spaced rows. The performance on this image issimilar to that of JBIG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马尔可夫随机场的无损约割集编码
本文提出了一种新的基于算术编码(AC)的马尔可夫随机场无损压缩方法——缩减割集编码。在最近的工作\cite{reye:09a}中,作者提出了一种高效的基于交流的编码非循环mrf的方法,并描述了一种基于局部条件作用(LC)的编码循环mrf的方法。在目前的工作中,我们介绍了一种循环MRF的AC编码算法,其中LC方法\cite{reye:09a}或结合连接树(JT)算法的acyclicMRF算法\cite{reye:09a}的复杂性太大。为了编码基于无循环图$G=(V,E)$的MRF,选择了一个割集$U\subset V$,使得由$U$引起的子图$G_U$和$G\setminus U$的每个组件对LC或JT都是可处理的。然后,cutsetvariables $X_U$使用基于$G_U$上定义的减少MRF的编码分布进行交流编码,而$X_V$的其余组件$X_{V\setminus U}$则以$X_U$为条件进行最佳交流编码。在最优编码$X_V$上的速率增加是$X_U$的边际分布和用于AC编码的$G_U$上的减少的MRF之间的归一化分歧。我们表明,这遵循了毕达哥拉斯分解,此外,在$G_U$上,简化的MRF的最佳指数参数是保留来自边际分布的矩的参数。我们还证明了使用此矩匹配指数参数编码$X_U$的速率等于使用此矩匹配参数简化的mrf的熵。我们通过对来自Ising模型的典型图像进行编码来说明我们方法的概念,该图像具有由均匀间隔的行组成的acutset。该图像的性能与JBIG相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape Recognition Using Vector Quantization Lossless Reduced Cutset Coding of Markov Random Fields Optimized Analog Mappings for Distributed Source-Channel Coding An MCMC Approach to Lossy Compression of Continuous Sources Lossless Compression of Mapped Domain Linear Prediction Residual for ITU-T Recommendation G.711.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1