An MCMC Approach to Lossy Compression of Continuous Sources

D. Baron, T. Weissman
{"title":"An MCMC Approach to Lossy Compression of Continuous Sources","authors":"D. Baron, T. Weissman","doi":"10.1109/DCC.2010.11","DOIUrl":null,"url":null,"abstract":"Motivated by the Markov chain Monte Carlo (MCMC) relaxation method of Jalali and Weissman, we propose a lossy compression algorithm for continuous amplitude sources that relies on a finite reproduction alphabet that grows with the input length. Our algorithm asymptotically achieves the optimum rate distortion (RD) function universally for stationary ergodic continuous amplitude sources. However, the large alphabet slows down the convergence to the RD function, and is thus an impediment in practice. We thus propose an MCMC-based algorithm that uses a (smaller) adaptive reproduction alphabet. In addition to computational advantages, the reduced alphabet accelerates convergenceto the RD function, and is thus more suitable in practice.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Motivated by the Markov chain Monte Carlo (MCMC) relaxation method of Jalali and Weissman, we propose a lossy compression algorithm for continuous amplitude sources that relies on a finite reproduction alphabet that grows with the input length. Our algorithm asymptotically achieves the optimum rate distortion (RD) function universally for stationary ergodic continuous amplitude sources. However, the large alphabet slows down the convergence to the RD function, and is thus an impediment in practice. We thus propose an MCMC-based algorithm that uses a (smaller) adaptive reproduction alphabet. In addition to computational advantages, the reduced alphabet accelerates convergenceto the RD function, and is thus more suitable in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续源有损压缩的MCMC方法
受Jalali和Weissman的Markov链蒙特卡罗(MCMC)松弛方法的启发,我们提出了一种连续振幅源的有损压缩算法,该算法依赖于随输入长度增长的有限复制字母表。对于平稳遍历连续振幅源,该算法渐近地普遍实现了最优率失真函数。然而,较大的字母减缓了对RD函数的收敛,因此在实践中是一个障碍。因此,我们提出了一种基于mcmc的算法,该算法使用(较小的)自适应复制字母表。除了计算优势外,简化后的字母表加速了向RD函数的收敛,因此更适合于实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape Recognition Using Vector Quantization Lossless Reduced Cutset Coding of Markov Random Fields Optimized Analog Mappings for Distributed Source-Channel Coding An MCMC Approach to Lossy Compression of Continuous Sources Lossless Compression of Mapped Domain Linear Prediction Residual for ITU-T Recommendation G.711.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1