Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN

Wenheng Sun, Wan Qiu, Xiaojia Huang, Jianming Hu, Tianyuan Wu
{"title":"Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN","authors":"Wenheng Sun, Wan Qiu, Xiaojia Huang, Jianming Hu, Tianyuan Wu","doi":"10.1109/cost57098.2022.00024","DOIUrl":null,"url":null,"abstract":"This paper analyzes the influencing factors of tourism development through the emotional tendencies in online travel reviews, and uses a Bidirectional long short-term memory Convolutional Neural Network (BiLSTM-CNN) deep learning model to classify online travel reviews. The model has high accuracy and good loss function convergence. Then we use the Dynamic Topic Models (DTM) model to analyze the classified texts at two levels. At the micro level, the main influencing factors of a destination are obtained for a certain destination, and corresponding improvement plans are proposed for the negative influencing factors. At the macro level, this paper analyzes the changing trend of the destination’s emotional inclination under the two influencing factors of fare and traffic.","PeriodicalId":135595,"journal":{"name":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cost57098.2022.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the influencing factors of tourism development through the emotional tendencies in online travel reviews, and uses a Bidirectional long short-term memory Convolutional Neural Network (BiLSTM-CNN) deep learning model to classify online travel reviews. The model has high accuracy and good loss function convergence. Then we use the Dynamic Topic Models (DTM) model to analyze the classified texts at two levels. At the micro level, the main influencing factors of a destination are obtained for a certain destination, and corresponding improvement plans are proposed for the negative influencing factors. At the macro level, this paper analyzes the changing trend of the destination’s emotional inclination under the two influencing factors of fare and traffic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BiLSTM-CNN的在线旅游评论情感影响因素分析
本文通过在线旅游评论的情感倾向分析旅游发展的影响因素,并采用双向长短期记忆卷积神经网络(BiLSTM-CNN)深度学习模型对在线旅游评论进行分类。该模型精度高,损失函数收敛性好。然后利用动态主题模型(Dynamic Topic Models, DTM)对分类文本进行两个层次的分析。在微观层面上,针对某一目的地获得了某一目的地的主要影响因素,并针对负面影响因素提出了相应的改进方案。在宏观层面上,本文分析了在票价和交通两种影响因素下,目的地情感倾向的变化趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Vision Enhancement Network for Image Quality Assessment Analysis and Application of Tourists’ Sentiment Based on Hotel Comment Data Automatic Image Generation of Peking Opera Face using StyleGAN2 Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN Performance comparison of deep learning methods on hand bone segmentation and bone age assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1