Genetic learning of multi-attribute interactions in speaker verification

Tuan D. Pham
{"title":"Genetic learning of multi-attribute interactions in speaker verification","authors":"Tuan D. Pham","doi":"10.1109/CEC.2000.870320","DOIUrl":null,"url":null,"abstract":"Genetic algorithms are applied to identify the interactions of multiple speech features, represented by fuzzy measures, for speaker recognition. This work aims to investigate more thoroughly the use of fuzzy measures and fuzzy integral in information fusion by means of genetic optimization. The proposed approach is implemented into the speaker verification system and tested against a commercial speech corpus. The results in terms of equal error rates show that the proposed speaker verification system is more favorable than the conventional normalization, and /spl lambda/-measure fuzzy-integral based methods.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Genetic algorithms are applied to identify the interactions of multiple speech features, represented by fuzzy measures, for speaker recognition. This work aims to investigate more thoroughly the use of fuzzy measures and fuzzy integral in information fusion by means of genetic optimization. The proposed approach is implemented into the speaker verification system and tested against a commercial speech corpus. The results in terms of equal error rates show that the proposed speaker verification system is more favorable than the conventional normalization, and /spl lambda/-measure fuzzy-integral based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
说话人验证中多属性交互的遗传学习
遗传算法用于识别多个语音特征之间的相互作用,以模糊度量表示,用于说话人识别。本工作旨在更深入地探讨模糊测度和模糊积分在遗传优化信息融合中的应用。将该方法应用到说话人验证系统中,并在商业语音语料库上进行了测试。在等错误率方面的结果表明,所提出的说话人验证系统比传统的归一化方法和基于/spl lambda/-measure的模糊积分方法更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1