Test-case generator TCG-2 for nonlinear parameter optimisation

Martin Schmidt, Z. Michalewicz
{"title":"Test-case generator TCG-2 for nonlinear parameter optimisation","authors":"Martin Schmidt, Z. Michalewicz","doi":"10.1109/CEC.2000.870370","DOIUrl":null,"url":null,"abstract":"Experimental results reported in many papers suggest that making an appropriate a priori choice of an evolutionary method for a nonlinear parameter optimisation problem remains an open question. It seems that the most promising approach at this stage of research is experimental, involving a design of a scalable test suite of constrained optimisation problems, in which many features could be easily tuned. Then it would be possible to evaluate merits and drawbacks of the available methods as well as test new methods efficiently. We discuss a new test-case generator for constrained parameter optimisation techniques, which deals with deficiencies of generators proposed earlier. This generator TCG-2 is capable of creating various test problems with different characteristics, including the dimensionality of the problem, number of local optima, number of active constraints at the optimum, topology of the feasible search space, etc. Such a test-case generator is very useful for analysing and comparing different constraint-handling techniques and different nonlinear parameter optimisation techniques.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"330 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Experimental results reported in many papers suggest that making an appropriate a priori choice of an evolutionary method for a nonlinear parameter optimisation problem remains an open question. It seems that the most promising approach at this stage of research is experimental, involving a design of a scalable test suite of constrained optimisation problems, in which many features could be easily tuned. Then it would be possible to evaluate merits and drawbacks of the available methods as well as test new methods efficiently. We discuss a new test-case generator for constrained parameter optimisation techniques, which deals with deficiencies of generators proposed earlier. This generator TCG-2 is capable of creating various test problems with different characteristics, including the dimensionality of the problem, number of local optima, number of active constraints at the optimum, topology of the feasible search space, etc. Such a test-case generator is very useful for analysing and comparing different constraint-handling techniques and different nonlinear parameter optimisation techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非线性参数优化的测试用例生成器TCG-2
许多论文报道的实验结果表明,对非线性参数优化问题进行适当的先验选择进化方法仍然是一个悬而未决的问题。在这个研究阶段,最有前途的方法似乎是实验性的,包括设计一个可扩展的约束优化问题测试套件,其中许多特征可以很容易地进行调整。这样就有可能评估现有方法的优缺点,并有效地测试新方法。我们讨论了约束参数优化技术的一个新的测试用例生成器,它处理了前面提出的生成器的不足。该生成器TCG-2能够生成具有不同特征的各种测试问题,包括问题的维数、局部最优数、最优处的活动约束数、可行搜索空间的拓扑结构等。这种测试用例生成器对于分析和比较不同的约束处理技术和不同的非线性参数优化技术非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1