Robust Epidemiological Prediction and Optimization

Chenyi Fu, Melvyn Sim, Minglong Zhou
{"title":"Robust Epidemiological Prediction and Optimization","authors":"Chenyi Fu, Melvyn Sim, Minglong Zhou","doi":"10.2139/ssrn.3869521","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has brought many countries to their knees, and the urgency to return to normalcy has never been greater. Epidemiological models, such as the SEIR compartmental model, are indispensable tools for, among other things, predicting how pandemic may spread over time and how vaccinations and different public health interventions could affect the outcome. However, deterministic epidemiological models do not reflect the stochastic nature of the actual infected populations for which the true distribution can never be determined precisely. When embedded in an optimization model, the impact of ambiguous risk can influence the desired outcomes of the mitigating strategy. To address these issues, we first propose a robust epidemiological model, which provides prediction intervals that is specified by the Aumann and Serrano (2008) riskiness index. With suitable approximations, the robust epidemiological optimization model that minimizes the riskiness index can be formulated as a mixed integer linear optimization problem. We illustrate how we can apply the robust epidemiological optimization model for strategic vaccine allocation by minimizing the model's riskiness indices for all the constraints on limiting infections across all time periods, and within a given budget for vaccinations. We conduct a simulation study using parameters estimated from open-source datasets on the COVID-19 pandemic. Simulation results illustrate that our robust vaccine allocation model yields solutions that outperform the benchmark models in controlling the spread of infections.","PeriodicalId":275253,"journal":{"name":"Operations Research eJournal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3869521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The COVID-19 pandemic has brought many countries to their knees, and the urgency to return to normalcy has never been greater. Epidemiological models, such as the SEIR compartmental model, are indispensable tools for, among other things, predicting how pandemic may spread over time and how vaccinations and different public health interventions could affect the outcome. However, deterministic epidemiological models do not reflect the stochastic nature of the actual infected populations for which the true distribution can never be determined precisely. When embedded in an optimization model, the impact of ambiguous risk can influence the desired outcomes of the mitigating strategy. To address these issues, we first propose a robust epidemiological model, which provides prediction intervals that is specified by the Aumann and Serrano (2008) riskiness index. With suitable approximations, the robust epidemiological optimization model that minimizes the riskiness index can be formulated as a mixed integer linear optimization problem. We illustrate how we can apply the robust epidemiological optimization model for strategic vaccine allocation by minimizing the model's riskiness indices for all the constraints on limiting infections across all time periods, and within a given budget for vaccinations. We conduct a simulation study using parameters estimated from open-source datasets on the COVID-19 pandemic. Simulation results illustrate that our robust vaccine allocation model yields solutions that outperform the benchmark models in controlling the spread of infections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳健流行病学预测与优化
COVID-19大流行使许多国家陷入困境,恢复正常的紧迫性从未如此迫切。流行病学模型,如SEIR区隔模型,除其他外,是预测流行病如何随着时间的推移传播以及疫苗接种和不同的公共卫生干预措施如何影响结果的不可或缺的工具。然而,确定性流行病学模型不能反映实际感染人群的随机性质,因为实际感染人群的真实分布永远无法精确确定。当嵌入到优化模型中时,模糊风险的影响可能会影响缓解策略的预期结果。为了解决这些问题,我们首先提出了一个强大的流行病学模型,该模型提供了由Aumann和Serrano(2008)风险指数指定的预测区间。在适当的近似条件下,使风险指数最小的鲁棒流行病学优化模型可表述为一个混合整数线性优化问题。我们说明了如何将鲁棒流行病学优化模型应用于战略性疫苗分配,方法是在给定的疫苗接种预算范围内,在所有时间段限制感染的所有约束条件下,最小化模型的风险指数。我们使用从COVID-19大流行的开源数据集估计的参数进行了模拟研究。仿真结果表明,我们的鲁棒疫苗分配模型在控制感染传播方面优于基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Performance of Certainty-equivalent Pricing Optimal Policies for a Multi-Echelon Inventory Problem with Service Time Target and Expediting Robust Epidemiological Prediction and Optimization Strategic Alliances and Lending Relationships Role of Production Efficiency: Inventory Leanness and Financial Outcome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1