{"title":"A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA","authors":"Fumio Hamanaka, Takuto Kanamori, Kenji Kise","doi":"10.1109/MCSoC51149.2021.00020","DOIUrl":null,"url":null,"abstract":"To realize autonomous driving, a deep neural network (DNN) is one of the key technologies. However, since DNN needs a lot of computation, it is challenging for an edge device to support DNN with limited computation resources. A binarized neural network (BNN) has been proposed to reduce latency and parameter size and is suited for hardware implementation. Since current DNN technology is a growing and better algorithm change with time, implementing DNN on an FPGA is preferable to an ASIC. In this paper, we propose a low cost and portable mini motor car system with a BNN accelerator on an FPGA. We compare the road tracking demonstration with a similar motor car using Raspberry Pi and show the effectiveness of FPGA in a DNN implementation. The proposed system is implemented on Nexys A7, one of the most popular FPGA development boards using an Artix-7 FPGA.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To realize autonomous driving, a deep neural network (DNN) is one of the key technologies. However, since DNN needs a lot of computation, it is challenging for an edge device to support DNN with limited computation resources. A binarized neural network (BNN) has been proposed to reduce latency and parameter size and is suited for hardware implementation. Since current DNN technology is a growing and better algorithm change with time, implementing DNN on an FPGA is preferable to an ASIC. In this paper, we propose a low cost and portable mini motor car system with a BNN accelerator on an FPGA. We compare the road tracking demonstration with a similar motor car using Raspberry Pi and show the effectiveness of FPGA in a DNN implementation. The proposed system is implemented on Nexys A7, one of the most popular FPGA development boards using an Artix-7 FPGA.