P. Blaise, Udita Kapoor, Mark A. Townsend, E. Guichard, J. Charles, D. Lemus, T. Kubis
{"title":"Nanoscale FET: How To Make Atomistic Simulation Versatile, Predictive, and Fast at 5nm Node and Below","authors":"P. Blaise, Udita Kapoor, Mark A. Townsend, E. Guichard, J. Charles, D. Lemus, T. Kubis","doi":"10.23919/SISPAD49475.2020.9241651","DOIUrl":null,"url":null,"abstract":"Ultra-scaled FET technology requires simulations at the atomic scale. We present the Victory Atomistic tool inherited from Nemo5. Thanks to a combination of non-equilibrium Green’s functions and state-of-the-art band structure calculations, versatile, predictive, and fast simulations become accessible within the self-consistent Born approximation, optimized by a generalized low-rank projection.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Ultra-scaled FET technology requires simulations at the atomic scale. We present the Victory Atomistic tool inherited from Nemo5. Thanks to a combination of non-equilibrium Green’s functions and state-of-the-art band structure calculations, versatile, predictive, and fast simulations become accessible within the self-consistent Born approximation, optimized by a generalized low-rank projection.