Keerthy Kusumam, T. Krajník, S. Pearson, Grzegorz Cielniak, T. Duckett
{"title":"Can you pick a broccoli? 3D-vision based detection and localisation of broccoli heads in the field","authors":"Keerthy Kusumam, T. Krajník, S. Pearson, Grzegorz Cielniak, T. Duckett","doi":"10.1109/IROS.2016.7759121","DOIUrl":null,"url":null,"abstract":"This paper presents a 3D vision system for robotic harvesting of broccoli using low-cost RGB-D sensors. The presented method addresses the tasks of detecting mature broccoli heads in the field and providing their 3D locations relative to the vehicle. The paper evaluates different 3D features, machine learning and temporal filtering methods for detection of broccoli heads. Our experiments show that a combination of Viewpoint Feature Histograms, Support Vector Machine classifier and a temporal filter to track the detected heads results in a system that detects broccoli heads with 95.2% precision. We also show that the temporal filtering can be used to generate a 3D map of the broccoli head positions in the field.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
This paper presents a 3D vision system for robotic harvesting of broccoli using low-cost RGB-D sensors. The presented method addresses the tasks of detecting mature broccoli heads in the field and providing their 3D locations relative to the vehicle. The paper evaluates different 3D features, machine learning and temporal filtering methods for detection of broccoli heads. Our experiments show that a combination of Viewpoint Feature Histograms, Support Vector Machine classifier and a temporal filter to track the detected heads results in a system that detects broccoli heads with 95.2% precision. We also show that the temporal filtering can be used to generate a 3D map of the broccoli head positions in the field.