Adaptive Node Refinement Collocation Method for Partial Differential Equations

José Antonio Muñoz-Gómez, Pedro González-Casanova, G. Gómez
{"title":"Adaptive Node Refinement Collocation Method for Partial Differential Equations","authors":"José Antonio Muñoz-Gómez, Pedro González-Casanova, G. Gómez","doi":"10.1109/ENC.2006.4","DOIUrl":null,"url":null,"abstract":"In this work, by using the local node refinement technique proposed by Behrens and Iske (2002) and Behrens et al. (2001), and a quad-tree type algorithm (Berger and Jameson, 1985; Keats and Lien, 2004), we built a global refinement technique for Kansa's unsymmetric collocation approach. The proposed scheme is based on a cell by cell data structure, which by using the former local error estimator, iteratively refines the node density in regions with insufficient accuracy. We test our algorithm for steady state partial differential equations in one and two dimensions. By using thin-plate spline kernel functions, we found that the node refinement let us to reduce the approximation error and that the node insertion is only performed in regions where the analytical solution shows a high spatial variation. In addition, we found that the node refinement outperform in accuracy and number of nodes in comparison with the global classical Cartesian h-refinement technique","PeriodicalId":432491,"journal":{"name":"2006 Seventh Mexican International Conference on Computer Science","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Seventh Mexican International Conference on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENC.2006.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this work, by using the local node refinement technique proposed by Behrens and Iske (2002) and Behrens et al. (2001), and a quad-tree type algorithm (Berger and Jameson, 1985; Keats and Lien, 2004), we built a global refinement technique for Kansa's unsymmetric collocation approach. The proposed scheme is based on a cell by cell data structure, which by using the former local error estimator, iteratively refines the node density in regions with insufficient accuracy. We test our algorithm for steady state partial differential equations in one and two dimensions. By using thin-plate spline kernel functions, we found that the node refinement let us to reduce the approximation error and that the node insertion is only performed in regions where the analytical solution shows a high spatial variation. In addition, we found that the node refinement outperform in accuracy and number of nodes in comparison with the global classical Cartesian h-refinement technique
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偏微分方程的自适应节点细化配置方法
在这项工作中,通过使用Behrens和Iske(2002)以及Behrens等人(2001)提出的局部节点细化技术,以及四叉树类型算法(Berger和Jameson, 1985;Keats and Lien, 2004),我们为Kansa的不对称搭配方法建立了一个全局优化技术。该方案基于逐单元的数据结构,利用先前的局部误差估计器,迭代地细化精度不足区域的节点密度。我们在一维和二维的稳态偏微分方程中测试了我们的算法。通过使用薄板样条核函数,我们发现节点细化使我们减小了近似误差,并且节点插入只在解析解显示出高空间变化的区域进行。此外,我们发现节点细化在精度和节点数量上优于全局经典笛卡尔h-细化技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Invited Talk Abstracts The Crescent Lab: A smart home lab for students Adaptive Node Refinement Collocation Method for Partial Differential Equations Defining new argumentation-based semantics by minimal models Multi-robot Motion Coordination based on Swing Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1