Data-Driven Low-Cost On-Chip Memory with Adaptive Power-Quality Trade-off for Mobile Video Streaming

Dongliang Chen, J. Edstrom, Xiaowei Chen, W. Jin, Jinhui Wang, Na Gong
{"title":"Data-Driven Low-Cost On-Chip Memory with Adaptive Power-Quality Trade-off for Mobile Video Streaming","authors":"Dongliang Chen, J. Edstrom, Xiaowei Chen, W. Jin, Jinhui Wang, Na Gong","doi":"10.1145/2934583.2934619","DOIUrl":null,"url":null,"abstract":"Nowadays, people enjoy watching mobile videos more than ever and mobile video streaming contributes to the majority of the total mobile data traffic. However, due to the high power consumption of mobile video decoders, especially the on-chip memories, short battery life represents one of the biggest contributors to user dissatisfaction. Various mobile embedded memory techniques have been investigated to reduce power consumption and prolong battery life. Unfortunately, the existing hardware-level research suffers from high implementation complexity and large overhead. In this paper, by introducing advanced data-mining techniques, we investigate meaningful data patterns hidden in mobile video data and apply the identified patterns to implement a low-power flexible hardware design with dynamic power-quality trade-off. A 45nm 32kb SRAM is presented that enables three levels of power-quality trade-off (up to 43.7% power savings) with negligible area overhead (0.06%).","PeriodicalId":142716,"journal":{"name":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2934583.2934619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Nowadays, people enjoy watching mobile videos more than ever and mobile video streaming contributes to the majority of the total mobile data traffic. However, due to the high power consumption of mobile video decoders, especially the on-chip memories, short battery life represents one of the biggest contributors to user dissatisfaction. Various mobile embedded memory techniques have been investigated to reduce power consumption and prolong battery life. Unfortunately, the existing hardware-level research suffers from high implementation complexity and large overhead. In this paper, by introducing advanced data-mining techniques, we investigate meaningful data patterns hidden in mobile video data and apply the identified patterns to implement a low-power flexible hardware design with dynamic power-quality trade-off. A 45nm 32kb SRAM is presented that enables three levels of power-quality trade-off (up to 43.7% power savings) with negligible area overhead (0.06%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应电能质量权衡的数据驱动低成本片上存储器
如今,人们比以往任何时候都更喜欢观看移动视频,移动视频流占移动数据流量的大部分。然而,由于移动视频解码器的高功耗,特别是片上存储器,电池寿命短是用户不满的最大原因之一。人们研究了各种移动嵌入式存储器技术,以降低功耗和延长电池寿命。遗憾的是,现有的硬件级研究存在实现复杂性高、开销大的问题。本文通过引入先进的数据挖掘技术,研究隐藏在移动视频数据中的有意义的数据模式,并将识别到的模式应用于实现具有动态电能质量权衡的低功耗灵活硬件设计。提出了一种45nm 32kb SRAM,可实现三个级别的功耗质量权衡(高达43.7%的功耗节约),而面积开销可忽略不计(0.06%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Impact of Magnetic and Thermal Attack on STTRAM and Low-Overhead Mitigation Techniques OS-based Resource Accounting for Asynchronous Resource Use in Mobile Systems Data-Driven Low-Cost On-Chip Memory with Adaptive Power-Quality Trade-off for Mobile Video Streaming Measurement-Driven Methodology for Evaluating Processor Heterogeneity Options for Power-Performance Efficiency SATS: An Ultra-Low Power Time Synchronization for Solar Energy Harvesting WSNs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1