Intraoperative ultrasonography for the correction of brainshift based on the matching of hyperechogenic structures

P. Coupé, P. Hellier, X. Morandi, C. Barillot
{"title":"Intraoperative ultrasonography for the correction of brainshift based on the matching of hyperechogenic structures","authors":"P. Coupé, P. Hellier, X. Morandi, C. Barillot","doi":"10.1109/ISBI.2010.5490261","DOIUrl":null,"url":null,"abstract":"In this paper, a global approach based on 3D freehand ultrasound imaging is proposed to (a) correct the error of the neuronavigation system in image-patient registration and (b) compensate for the deformations of the cerebral structures occurring during a neurosurgical procedure. The rigid and non rigid multimodal registrations are achieved by matching the hyperechogenic structures of brain. The quantitative evaluation of the non rigid registration was performed within a framework based on synthetic deformation. Finally, experiments were carried out on real data sets of 4 patients with lesions such as cavernoma and low-grade glioma. Qualitative and quantitative results on the estimated error performed by neuronavigation system and the estimated brain deformations are given.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a global approach based on 3D freehand ultrasound imaging is proposed to (a) correct the error of the neuronavigation system in image-patient registration and (b) compensate for the deformations of the cerebral structures occurring during a neurosurgical procedure. The rigid and non rigid multimodal registrations are achieved by matching the hyperechogenic structures of brain. The quantitative evaluation of the non rigid registration was performed within a framework based on synthetic deformation. Finally, experiments were carried out on real data sets of 4 patients with lesions such as cavernoma and low-grade glioma. Qualitative and quantitative results on the estimated error performed by neuronavigation system and the estimated brain deformations are given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高回声结构匹配的术中超声校正脑移位
本文提出了一种基于三维手绘超声成像的全局方法,以(a)纠正神经导航系统在图像-患者配准中的误差,(b)补偿神经外科手术过程中发生的大脑结构变形。通过匹配大脑的高回声结构,实现了刚性和非刚性的多模态配准。在基于合成变形的框架内对非刚性配准进行定量评价。最后,在4例海绵状瘤、低级别胶质瘤等病变患者的真实数据集上进行实验。给出了神经导航系统估计误差和脑变形估计的定性和定量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1