III–V FET channel designs for high current densities and thin inversion layers

M. Rodwell, W. Frensley, S. Steiger, E. Chagarov, S. Lee, H. Ryu, Y. Tan, G. Hegde, L. Wang, J. Law, T. Boykin, G. Klimek, P. Asbeck, A. Kummel, J. Schulman
{"title":"III–V FET channel designs for high current densities and thin inversion layers","authors":"M. Rodwell, W. Frensley, S. Steiger, E. Chagarov, S. Lee, H. Ryu, Y. Tan, G. Hegde, L. Wang, J. Law, T. Boykin, G. Klimek, P. Asbeck, A. Kummel, J. Schulman","doi":"10.1109/DRC.2010.5551882","DOIUrl":null,"url":null,"abstract":"III–V FETs are being developed for potential application in 0.3–3 THz systems and VLSI. To increase bandwidth, we must increase the drive current I<inf>d</inf> = qn<inf>s</inf> v<inf>inj</inf>W<inf>g</inf> per unit gate width W<inf>g</inf>, requiring both high sheet carrier concentrations n<inf>s</inf> and high injection velocities v<inf>inj</inf>. Present III–V NFETs restrict control region transport to the single isotropic Γ band minimum. As the gate dielectric is thinned, I<inf>d</inf> becomes limited by the effective mass m*, and is only increased by using materials with increased m* and hence increased transit times.<sup>1</sup> The deep wavefunction also makes Γ -valley transport in low-m*materials unsuitable for < 22-nm gate length (L<inf>g</inf>) FETs. Yet, the L-valleys in many III–V materials<sup>2</sup> have very low transverse m<inf>t</inf> and very high longitudinal mass m<inf>1</inf>. L-valley bound state energies depend upon orientation, and the directions of confinement, growth, and transport can be chosen to selectively populate valleys having low mass in the transport direction<sup>3,4</sup>. The high perpendicular mass permits placement of multiple quantum wells spaced by a few nm, or population of multiple states of a thicker well spaced by ∼10–100 meV. Using combinations of Γ and L valleys, n<inf>s</inf> can be increased, m* kept low, and vertical confinement improved, key requirements for <20-nm L<inf>g</inf> III–V FETs.","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

III–V FETs are being developed for potential application in 0.3–3 THz systems and VLSI. To increase bandwidth, we must increase the drive current Id = qns vinjWg per unit gate width Wg, requiring both high sheet carrier concentrations ns and high injection velocities vinj. Present III–V NFETs restrict control region transport to the single isotropic Γ band minimum. As the gate dielectric is thinned, Id becomes limited by the effective mass m*, and is only increased by using materials with increased m* and hence increased transit times.1 The deep wavefunction also makes Γ -valley transport in low-m*materials unsuitable for < 22-nm gate length (Lg) FETs. Yet, the L-valleys in many III–V materials2 have very low transverse mt and very high longitudinal mass m1. L-valley bound state energies depend upon orientation, and the directions of confinement, growth, and transport can be chosen to selectively populate valleys having low mass in the transport direction3,4. The high perpendicular mass permits placement of multiple quantum wells spaced by a few nm, or population of multiple states of a thicker well spaced by ∼10–100 meV. Using combinations of Γ and L valleys, ns can be increased, m* kept low, and vertical confinement improved, key requirements for <20-nm Lg III–V FETs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高电流密度和薄反转层的III-V场效应管沟道设计
III-V型场效应管正在开发中,用于0.3-3太赫兹系统和VLSI的潜在应用。为了增加带宽,我们必须增加每单位栅极宽度Wg的驱动电流Id = qns vinjWg,这需要高载流子浓度ns和高注入速度vinj。目前III-V型非场效应管将控制区域输运限制在单个各向同性Γ最小带。当栅极电介质变薄时,Id受到有效质量m*的限制,并且只有使用增加m*的材料才能增加Id,从而增加传递时间深波函数还使得低m*材料中的Γ -谷输运不适用于< 22 nm栅极长度(Lg)场效应管。然而,许多III-V材料中的l -谷具有非常低的横向mt和非常高的纵向质量m1。l -谷束缚态能量取决于取向,并且可以选择约束、生长和输运的方向来选择性地填充在输运方向上具有低质量的谷3,4。高垂直质量允许放置间隔几nm的多个量子阱,或者间隔约10-100 meV的较厚阱的多个态的填充。使用Γ和L谷的组合,可以增加ns,保持低m*,并改善垂直约束,这是g III-V场效应管的关键要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent progress in GaN FETs on silicon substrate for switching and RF power applications Room temperature nonlinear ballistic nanodevices for logic applications III–V FET channel designs for high current densities and thin inversion layers High retention-time nonvolatile amorphous silicon TFT memory for static active matrix OLED display without pixel refresh Non-volatile spin-transfer torque RAM (STT-RAM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1