Metal Grain Granularity Induced Variability in Gate-All-Around Si-Nanowire Transistors at 1nm Technology Node

Tara Prasanna Dash, S. Dey, J. Jena, S. Das, E. Mohapatra, C. K. Maiti
{"title":"Metal Grain Granularity Induced Variability in Gate-All-Around Si-Nanowire Transistors at 1nm Technology Node","authors":"Tara Prasanna Dash, S. Dey, J. Jena, S. Das, E. Mohapatra, C. K. Maiti","doi":"10.1109/DEVIC.2019.8783717","DOIUrl":null,"url":null,"abstract":"As predicted, 5nm technology is not going to be ready for production until 2025 and it will be some sort of FinFET (possibly gate-all-around silicon nanowire or similar type of devices). It is time to search for advanced device structures such as nanowires. In this work, TCAD simulations are performed for the first time to evaluate the potential of 1nm gate length cylindrical Si channel nanowire field effect transistors (NW-FET) at extreme scaling limits. Effects of metal grain granularity (MGG) of the gate-all-around (GAA) NW-FET device have been studied to understand variability of the performance metrics such as, the threshold voltage, on-current, off-current, sub-threshold slope and drain induced barrier lowering. It is shown that the gate-all-around NW-FETs have the potential to replace FinFETs in future technology nodes because of their better channel electrostatic control.","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As predicted, 5nm technology is not going to be ready for production until 2025 and it will be some sort of FinFET (possibly gate-all-around silicon nanowire or similar type of devices). It is time to search for advanced device structures such as nanowires. In this work, TCAD simulations are performed for the first time to evaluate the potential of 1nm gate length cylindrical Si channel nanowire field effect transistors (NW-FET) at extreme scaling limits. Effects of metal grain granularity (MGG) of the gate-all-around (GAA) NW-FET device have been studied to understand variability of the performance metrics such as, the threshold voltage, on-current, off-current, sub-threshold slope and drain induced barrier lowering. It is shown that the gate-all-around NW-FETs have the potential to replace FinFETs in future technology nodes because of their better channel electrostatic control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属晶粒度对栅极全能硅纳米线晶体管的影响
正如预测的那样,5nm技术要到2025年才能投入生产,它将是某种FinFET(可能是栅极全能硅纳米线或类似类型的器件)。现在是时候寻找先进的器件结构,如纳米线。在这项工作中,首次进行了TCAD模拟,以评估1nm栅长圆柱形硅沟道纳米线场效应晶体管(NW-FET)在极端尺度限制下的潜力。本文研究了金属晶粒粒度(MGG)对栅极全通(GAA) NW-FET器件的影响,以了解阈值电压、通断电流、亚阈值斜率和漏极诱导势垒降低等性能指标的变化。结果表明,栅极全方位nw - fet由于具有更好的沟道静电控制,在未来的技术节点上具有取代finfet的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Drain Current Model of UTBB SOI MOSFET with lateral dual gates to Suppress Short Channel Effect Effect of AlGaN Back Barrier on InAlN/AlN/GaN E-Mode HEMTs Work-function modulated hetero gate charge plasma TFET to enhance the device performance All-optical Walsh-Hadamard code Generation using MZI Performance Analysis of Staggered Heterojunction based SRG TFET biosensor for health IoT application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1