Hybrid expert system neural network hierarchical architecture for classifying power system contingencies

H. Yan, J. Chow, M. Kam, R. Fischl, C.R. Sepich
{"title":"Hybrid expert system neural network hierarchical architecture for classifying power system contingencies","authors":"H. Yan, J. Chow, M. Kam, R. Fischl, C.R. Sepich","doi":"10.1109/ANN.1991.213501","DOIUrl":null,"url":null,"abstract":"The authors present a hierarchical architecture which couples an expert system (ES) with multiple neural networks (NNs) for classifying power system contingencies. The ES performs the 'coarse' screening to decide if a contingency is potentially harmful and then determines its type of security limit violations. It uses a set of heuristic rules and a set of performance indicators to filter out the secure contingencies and direct the potentially harmful ones for further analysis in the appropriate NN. The NN's take the coarse classification outcome from the ES and perform a 'finer' screening by classifying the contingencies according to the severity of limit violations.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The authors present a hierarchical architecture which couples an expert system (ES) with multiple neural networks (NNs) for classifying power system contingencies. The ES performs the 'coarse' screening to decide if a contingency is potentially harmful and then determines its type of security limit violations. It uses a set of heuristic rules and a set of performance indicators to filter out the secure contingencies and direct the potentially harmful ones for further analysis in the appropriate NN. The NN's take the coarse classification outcome from the ES and perform a 'finer' screening by classifying the contingencies according to the severity of limit violations.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电力系统事故分类的混合专家系统神经网络分层结构
作者提出了一种将专家系统与多个神经网络相结合的分层结构,用于电力系统事故分类。ES执行“粗”筛选,以确定突发事件是否具有潜在危害,然后确定其违反安全限制的类型。它使用一组启发式规则和一组性能指标来过滤掉安全事件,并指导潜在的有害事件在适当的神经网络中进行进一步分析。神经网络从ES中获取粗分类结果,并根据违反限制的严重程度对偶发事件进行分类,从而执行“更精细”的筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite precision error analysis for neural network learning Hybrid expert system neural network hierarchical architecture for classifying power system contingencies Neural network application to state estimation computation Short term electric load forecasting using an adaptively trained layered perceptron Neural networks for topology determination of power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1